基于局部对比度测量的红外弱小目标恒虚警检测
Robust Small Dim Object CFA Detection Algorithm Based on Local Contrast Measure in Aerial Complex Background
-
摘要: 鲁棒有效的弱小目标检测算法是光电跟踪系统成功的关键.本文针对空中远距离红外弱小目标检测的实际问题,在人类视觉对比机制基础上提出了一种检测率高、误报率低、处理时间短的红外小目标检测方法.首先,利用基于恒虚警率的Top-hat滤波和自适应阈值操作对原始图像进行预处理,得到疑似目标区域,该步骤可大大减少计算时间,同时保持恒定的虚警概率和可预测的检测概率;然后,定义了一种新颖有效的局部对比度测量算子,并引入图像局部的自相似性计算局部显著图,该过程不仅可以增强图像目标的视觉显著性,同时还可以抑制噪声,提高区域目标的信噪比;最后,在显著图基础上,利用简单的阈值操作就可以获得真实目标.定性定量实验结果表明,本文提出的方法与4种现有检测算法相比,具有更高的检测率、更低的虚警率和更少的检测时间,是复杂背景下红外弱小目标检测的有效方法.