LIU Guangwei, CAI Yi, CHEN Dongqi, WANG Lingxue. Distance Estimation for Precise Object Recognition Considering Geometric Distortion of Wide-angle Lens[J]. Infrared Technology , 2021, 43(12): 1158-1165.
Citation: LIU Guangwei, CAI Yi, CHEN Dongqi, WANG Lingxue. Distance Estimation for Precise Object Recognition Considering Geometric Distortion of Wide-angle Lens[J]. Infrared Technology , 2021, 43(12): 1158-1165.

Distance Estimation for Precise Object Recognition Considering Geometric Distortion of Wide-angle Lens

More Information
  • Received Date: January 31, 2021
  • Revised Date: March 07, 2021
  • Available Online: May 15, 2024
  • Face and license plate recognition are crucial aspects in the field of intelligent security. A high-spatial-resolution imaging system with a large-format detector and low-distortion optical lens is required for recognizing small-scale features and rich details in faces and license plates. However, security systems need to monitor wide area, which requires a wide-angle lens with a wide field of view, but with some distortion. Therefore, precise target recognition should be used as a constraint to balance the high spatial resolution and wide field of view when designing an imaging system that can recognize details and monitor a wide area. Under such application requirements, an evaluation index based on pixel areal density is proposed. With the aid of this evaluation index, a distance estimation method for precise object recognition, considering the radial distortion of the wide-angle lens, was designed. Rotated and translated faces and license plates were used to demonstrate the estimation method. The results indicate that the recognition distance with radial distortion is less than that without radial distortion. When the translation distance is 1 m and 2 m, the difference between the actual recognition distance and the ideal recognition distance is 34.2% and 27.5%, respectively.

  • [1]
    Taskiran M, Kahraman N, Erdem C E. Face recognition: past, present and future (a review)[J]. Digital Signal Processing, 2020, 106: 102809. DOI: 10.1016/j.dsp.2020.102809
    [2]
    DING C, TAO D. A comprehensive survey on pose-invariant face recognition[J]. Acm Transactions on Intelligent Systems & Technology, 2016, 7(3): 37. http://www.researchgate.net/profile/Changxing_Ding/publication/272422850_A_Comprehensive_Survey_on_Pose-Invariant_Face_Recognition/links/54f9177b0cf28d6deca34081.pdf
    [3]
    WANG Zhenzhou, ZHANG Xu, YU Pingping, et al. A new face recognition method for intelligent security[J]. Applied Sciences, 2020, 10(3): 852. DOI: 10.3390/app10030852
    [4]
    Ahmed A U, Masum T M, Rahman M M. Design of an automated secure garage system using license plate recognition technique[J]. International Journal of Intelligent Systems & Applications, 2014, 6(2): 22-28.
    [5]
    Baran R, Rusc T, Fornalski P. A smart camera for the surveillance of vehicles in intelligent transportation systems[J]. Multimedia Tools and Applications, 2016, 75(17): 10471-10493. DOI: 10.1007/s11042-015-3151-y
    [6]
    CHUNG Y N, LU T C, HUANG Y X, et al. Applying image recognition technology to intelligent security management systems[C]//International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2015), 2015: 117-120.
    [7]
    Abramkina D E, Khatsevich T N. Analysis of optical systems of extremely wide-angle lenses for digital cameras[J]. Interexpo GEO-Siberia, 2020, 6(1): 3-10. DOI: 10.33764/2618-981X-2020-6-1-3-10
    [8]
    Juarez-Salazar R, ZHENG J, Diaz-Ramirez V H. Distorted pinhole camera modeling and calibration[J]. Applied Optics, 2020, 59(36): 11310-11318. DOI: 10.1364/AO.412159
    [9]
    WU F, WEI H, WANG X. Correction of image radial distortion based on division model[J]. Optical Engineering, 2017, 56(1): 013108. DOI: 10.1117/1.OE.56.1.013108
    [10]
    Johnson J. Analysis of image forming systems[C]//Proceedings of SPIE, 1958, 513(513): 761.
    [11]
    Leachtenauer J C. Resolution requirements and the Johnson criteria revisited[J]. Proceedings of SPIE, 2003, 5076: 1-15. DOI: 10.1117/12.497896
    [12]
    中国国家标准化管理委员会. 公共安全人脸识别应用图像技术要求: GB/T 35678-2017[S]. 中国标准出版社, 2017.

    Standardization Administration of the People's Republic of China. Public Security Face Recognition Application Technical Requirements for Face Images: GB/T 35678-2017[S]. Standards Press of China, 2017.
    [13]
    中国国家标准化管理委员会. 机动车号牌图像自动识别技术规范: GA/T 833-2016[S]. 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. License plate of motor vehicle of the People's Republic of China: GA/T 833-2016[S]. Standards Press of China, 2016.
    [14]
    European Committee for Electrotechnical Standardization. Video surveillance Systems for Use in Security Applications-Part 4: Application Guidelines: UNE-EN 62676-4-2015[S]. CEN-CENELEC Management Centre, 2014.
    [15]
    Tony Mansfield. Adding Value to CCTV: Issues in Testing of Facial Recognition Systems[M]. UK: Home Office Scientific Development Branch, 2014: 4-12.
    [16]
    中国国家标准化管理委员会. 成年人头面部尺寸: GB/T 2428-1998[S]. 中国标准出版社, 1998.

    Standardization Administration. Head-face Dimensions of Adults: GB/T 2428-1998[S]. Standards Press of China, 1998.
    [17]
    中国国家标准化管理委员会. 中华人民共和国机动车号牌: GA 36-2018[S]. 中国标准出版社, 2018.

    Standardization Administration. License Plate of Motor Vehicle of the People's Republic of China: GA 36-2018[S]. Standards Press of China, 2018.
  • Related Articles

    [1]XIA Yan. Research on 3D Target Recognition Algorithm Based on Infrared Features[J]. Infrared Technology , 2022, 44(11): 1161-1166.
    [2]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [3]LI Xue, CHEN Yong, JIA Ming-yong. The Target Recognition Technology for Multi-Element Dual-Band IR Seeker[J]. Infrared Technology , 2013, (6): 373-376.
    [4]Target Recognition of Hyperspectral Image Based on Enhanced Spectral Characteristics[J]. Infrared Technology , 2010, 32(12): 717-722. DOI: 10.3969/j.issn.1001-8891.2010.12.008
    [5]YANG Yong-sheng, WANG Min-gang, HOU Mei-chan. Ground Target Recognition Method Based on SIFT[J]. Infrared Technology , 2010, 32(12): 713-716,722. DOI: 10.3969/j.issn.1001-8891.2010.12.007
    [6]CHEN Deng-feng, JI Qi-chun, ZHANG Hong-cai. Target Recognition System Based on D-S Theory of Conflict Evidence[J]. Infrared Technology , 2007, 29(9): 497-500,504. DOI: 10.3969/j.issn.1001-8891.2007.09.001
    [7]ZHAO Qin, ZHOU Tao, SHU Qin. Recognition and Pose Estimation of Airplane Infrared Image[J]. Infrared Technology , 2007, 29(3): 167-169. DOI: 10.3969/j.issn.1001-8891.2007.03.012
    [8]QIU Zhi-Min, LI Jun, GE Jun, ZHOU Qi-Bo. An Automatic Target Recognition Algorithm Based on Hausdorff Distance[J]. Infrared Technology , 2006, 28(4): 199-202. DOI: 10.3969/j.issn.1001-8891.2006.04.004
    [9]Study on the Recognition Method of Ground Target Based on Detecting Interest Iegion[J]. Infrared Technology , 2004, 26(3): 33-36. DOI: 10.3969/j.issn.1001-8891.2004.03.008
    [10]Research on the Target Recognition Processing System of Two Color Infrared Subpixel Imaging[J]. Infrared Technology , 2003, 25(4): 20-22. DOI: 10.3969/j.issn.1001-8891.2003.04.005
  • Cited by

    Periodical cited type(3)

    1. 王韬,李海峰. 汽车抬头显示动态畸变的主观实验评估. 光学学报. 2024(05): 296-305 .
    2. 曾惠霞,许龙铭,肖平. AI图像识别下的木材表面缺陷结构光视觉检测方法. 激光杂志. 2023(07): 223-228 .
    3. 肖敦强. 探析旅行摄影中广角镜头的使用. 旅游与摄影. 2022(10): 107-109 .

    Other cited types(5)

Catalog

    Article views (251) PDF downloads (74) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return