Citation: | ZHOU Kun, PENG Xiong, ZHONG Xingu, ZHANG Wenhui, LI Qianxi, ZHAO Chao. Identification of Exposed Reinforcement Defects in Bridge Concrete Based on Hyperspectral Imaging[J]. Infrared Technology , 2024, 46(2): 216-224. |
[1] |
李昌铸, 张劲泉, 夏晓霞, 等. 公路桥梁技术状况评定标准: JTG/T H21-2011[S]. 北京: 人民交通出版社, 2011.
LI Changzhu, ZHANG Jinquan, XIA Xiaoxia, et al. Evaluation Standard for Technical Condition of Highway Bridges: JTG/T H21-2011[S]. Beijing: People's Transportation Press, 2011.
|
[2] |
张海明. 土木工程结构中远距离非接触式表面缺陷及裂缝检测系统研究[D]. 北京: 中冶集团建筑研究总院, 2013.
ZHANG Haiming. Research on Long-distance Non-contact Surface Defects and Crack Detection System in Civil Engineering Structures[D]. Beijing: MCC Construction Research Institute, 2013.
|
[3] |
奚韵哲. 桥用爬壁机器人检测高墩裂缝技术研究[D]. 重庆: 重庆交通大学, 2019.
XI Yunzhe. Research on the Technology of Detecting Cracks in High Piers by Wall-climbing Robot for Bridges[D]. Chongqing: Chongqing Jiaotong University, 2019.
|
[4] |
ZHANG Cheng, YANG Zou, FENG Wang, et al. Towards fully automated unmanned aerial vehicle-enabled bridge inspection: Where are we at?[J]. Construction and Building Materials, 2022, 347: 128543. DOI: 10.1016/j.conbuildmat.2022.128543
|
[5] |
赵天祺, 勾红叶, 陈萱颖, 等. 桥梁信息化及智能桥梁2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43: 268-279.
ZHAO Tianqi, GOU Hongye, CHEN Xuanying, et al. Research progress of bridge informatization and intelligent bridge in 2020[J]. Journal of Civil and Environmental Engineering (Chinese and English) 2021, 43: 268-279.
|
[6] |
钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61.
ZHONG Xingu, PENG Xiong, SHEN Mingyan, et al. Feasibility study on bridge crack width identification based on unmanned aerial vehicle imaging[J]. China Civil Engineering Journal, 2019, 52(4): 52-61.
|
[7] |
DING W, YANG H, YU K, SHEN Mingyan, . Crack detection and quantification for concrete structures using UAV and transformer[J]. Automation in Construction, 2023, 152: 04929.
|
[8] |
刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.
LIU Yufei, FAN Jiansheng, NIE Jianguo, et al. Review and prospect of digital image method recognition of structural surface cracks[J]. China Civil Engineering Journal, 2021, 54(6): 79-98.
|
[9] |
鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11.
BAO Yuequan, LI Hui. Civil engineering in the era of artificial intelligence[J]. China Civil Engineering Journal, 2019, 52(5): 1-11.
|
[10] |
邓露, 褚鸿鹄, 龙砺芝, 等. 基于深度学习的土木基础设施裂缝检测综述[J]. 中国公路学报, 2023, 36(2): 1-21.
DENG Lu, CHU Honghu, LONG Lizhi, et al. Review of crack detection in civil infrastructure based on deep learning[J]. China Journal of Highway and Transport, 2023, 36(2): 1-21.
|
[11] |
勾红叶, 杨彪, 华辉, 等. 桥梁信息化及智能桥梁2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(5): 14-27.
GOU Hongye, YANG Biao, HUA Hui, et al. Research progress of bridge informatization and intelligent bridge in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 14-27.
|
[12] |
王保宪, 白少雄, 赵维刚. 基于特征增强学习的路面裂缝病害视觉检测方法[J]. 铁道科学与工程学报, 2022, 19(7): 1927-1935.
WANG Baoxian, BAI Shaoxiong, ZHAO Weigang. Visual detection method of pavement crack disease based on feature enhancement learning[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1927-1935.
|
[13] |
薛庆生, 李畅, 李婷婷, 等. 基于LVF的高光谱成像仪研制及应用[J]. 光子学报, 2021, 50(9): 203-214.
XUE Qingsheng, LI Chang, LI Tingting, et al. Development and application of LVF-based hyperspectral imager[J]. Acta Photonica Sinica, 2021, 50(9): 203-214.
|
[14] |
王冰冰, 喻文勇, 龙小祥, 等. 高分辨率卫星地面处理系统研制[J]. 遥感学报, 2021, 25(9): 1946-1963.
WANG Bingbing, YU Wenyong, LONG Xiaoxiang, et al. Development of high-resolution satellite ground processing system[J]. Journal of Remote Sensing, 2021, 25(9): 1946-1963.
|
[15] |
肖臣稷, 王卿, 王敏, 等. 基于高分五号卫星遥感数据的长江河口叶绿素a浓度反演[J]. 东华大学学报(自然科学版), 2022, 48(4): 92-99.
XIAO Chenji, WANG Qing, WANG Min, et al. Inversion of chlorophyll a concentration in the estuary of the Yangtze River based on remote sensing data of Gaofen-5 satellite[J]. Journal of Donghua University (Natural Science Edition), 2022, 48(4): 92-99.
|
[16] |
李笑芳, 王延仓, 顾晓鹤, 等. 基于高光谱技术建筑反射隔热涂料厚度检测技术的研究[J]. 光谱学与光谱分析, 2020, 40(8): 2552-2557.
LI Xiaofang, WANG Yancang, GU Xiaohe, et al. Research on thickness detection technology of building reflective thermal insulation coating based on hyperspectral technology[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2552-2557.
|
[17] |
Bonifazi G, Palmieri R, Serranti S. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging[J]. Construction and Building Materials, 2018, 169: 835-842 DOI: 10.1016/j.conbuildmat.2018.03.048
|
[18] |
Bonifazi G, Capobianco G, Serranti S. Hyperspectral imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste[J]. Applied Sciences, 2019, 9(21): 4587. DOI: 10.3390/app9214587
|
[19] |
Serranti S, Gargiulo A, Bonifazi G. Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system[J]. Resources, Conservation and Recycling, 2012, 61: 52-58 DOI: 10.1016/j.resconrec.2012.01.007
|
[20] |
邵慧, 撒贝宁, 李伟, 等. 一种适用于古建筑建模的全波形高光谱激光雷达设计与实现[J]. 红外与激光工程, 2022, 51(8): 197-206.
SHAO Hui, SA Beining, LI Wei, et al. Design and implementation of a full-waveform hyperspectral LiDAR for modeling of ancient buildings[J]. Infrared and Laser Engineering, 2022, 51(8): 197-206.
|
[21] |
严阳, 华文深, 张炎, 等. 可见-近红外高光谱伪装目标特分析[J]. 红外技术, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011
YAN Yang, HUA Wenshen, ZHANG Yan, et al. Special analysis of vision-near-infrared hyperspectral camouflage target[J]. Infrared Technology, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011
|
[22] |
熊显名, 张乾坤, 秦祖军. 基于可见-近红外光谱的路面状况识别的研究[J]. 红外技术, 2021, 43(2): 131-137. http://hwjs.nvir.cn/article/id/532fdd18-b2cc-4513-bb61-46bca8e091dd
XIONG Xianming, ZHANG Qiankun, QIN Zujun. Research on road condition recognition based on vision-near-infrared spectroscopy[J]. Infrared Technology, 2021, 43(2): 131-137. http://hwjs.nvir.cn/article/id/532fdd18-b2cc-4513-bb61-46bca8e091dd
|
[23] |
田英慧, 金伟其, 赵志勇, 等. 基于反射光谱和图像的雪地伪装材料紫外检测技术研究[J]. 红外技术, 2017, 39(5): 469-474. http://hwjs.nvir.cn/article/id/hwjs201705014
TIAN Yinghui, JIN Weiqi, ZHAO Zhiyong, et al. Research on ultraviolet detection technology of snow camouflage materials based on reflection spectra and images[J]. Infrared Technology, 2017, 39(5): 469-474. http://hwjs.nvir.cn/article/id/hwjs201705014
|
[24] |
张海馨, 张正龙, 李晓奇, 等. 基于尾焰光谱分布特性分析的高速目标识别系统[J]. 红外技术, 2017, 39(7): 599-604. http://hwjs.nvir.cn/article/id/hwjs201707003
ZHANG Haixin, ZHANG Zhenglong, LI Xiaoqi, et al. High-speed target recognition system based on analysis of tail flame spectral distribution characteristics[J]. Infrared Technology, 2017, 39(7): 599-604. http://hwjs.nvir.cn/article/id/hwjs201707003
|
[25] |
程俊毅, 张显峰, 孙权, 等. 沥青路面老化状况遥感监测与评估模型建立及应用[J]. 遥感技术与应用, 2018, 33(5): 956-964.
CHENG Junyi, ZHANG Xianfeng, SUN Quan, et al. Establishment and application of remote sensing monitoring and evaluation model for asphalt pavement aging condition[J]. Remote Sensing Technology and Application, 2018, 33(5): 956-964.
|
[26] |
Ichi E, Dorafshan S. Spectral characterization of fouled railroad ballast using hyperspectral imaging[J]. Construction and Building Materials, 2023, 394: 132076. DOI: 10.1016/j.conbuildmat.2023.132076
|
[27] |
Kim B, Cho S. Efflorescence assessment using hyperspectral imaging for concrete structures[J]. Smart Structures and Systems, An International Journal, 2018, 22(2): 209-221.
|
[28] |
Huynh C P, Mustapha S, Runcie P, et al. Multi-class support vector machines for paint condition assessment on the Sydney Harbour Bridge using hyperspectral imaging[J]. Struct. Monit. Maint., 2015, 2(3): 181-197.
|
[29] |
彭雄, 钟新谷, 赵超, 等. 基于无人机热成像的建筑饰面层脱粘缺陷识别[J]. 红外技术, 2022, 44(2): 189-197. http://hwjs.nvir.cn/article/id/565c3909-3e87-446f-8279-03f98a779184
PENG Xiong, ZHONG Xingu, ZHAO Chao, et al. Desticking defect identification of building finishing layer based on UAV thermal imaging [J]. Infrared Technology, 2022, 44(2): 189-197. http://hwjs.nvir.cn/article/id/565c3909-3e87-446f-8279-03f98a779184
|
[30] |
MENG Y, YUAN W, Aktilek E U, et al. Fine hyperspectral classification of rice varieties based on self-attention mechanism[J]. Ecological Informatics, 2023, 75: 102035. DOI: 10.1016/j.ecoinf.2023.102035
|
[31] |
Schafer R W. What is a Savitzky-Golay filter?[J]. IEEE Signal Processing Magazine, 2011, 28(4): 111-117. DOI: 10.1109/MSP.2011.941097
|
[32] |
Fearn T, Riccioli C, Garrido-Varo A, et al. On the geometry of SNV and MSC[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1): 22-26. DOI: 10.1016/j.chemolab.2008.11.006
|
[33] |
Abulaiti Y, Sawut M, Maimaitiaili B, et al. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton[J]. Computers and Electronics in Agriculture, 2020, 171: 105275. DOI: 10.1016/j.compag.2020.105275
|
[34] |
FENG S, Itoh Y, Parente M, et al. Hyperspectral band selection from statistical wavelet models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2111-2123.
|
[35] |
LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
|
[1] | LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48. |
[2] | CHEN Tao, LI Weizhong, LIU Yanlei, WANG Fei, JIANG Chenghang, ZHOU Hong. Feasibility Analysis of On-Line Infrared Detection of Incomplete Penetration Defect in Metal Pipe Welded Joint[J]. Infrared Technology , 2019, 41(12): 1146-1150. |
[3] | WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969. |
[4] | LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63. |
[5] | A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274. |
[6] | YUE Da-hao, LI Xiao-li, ZHANG Hao-jun, LI Ye-shu, FENG Li-chun, WU Nai-ming. IR Thermography Inspection of Wind Turbine Blades[J]. Infrared Technology , 2011, 33(10): 614-617. DOI: 10.3969/j.issn.1001-8891.2011.10.013 |
[7] | FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007 |
[8] | ZHOU Jian-long, CHENG Xue-qun, HU Yang, LI Xiao-gang. Damage Inspection and Evaluation of Industrial Furnace Wall Lining with Infrared Thermal Imager[J]. Infrared Technology , 2008, 30(10): 595-598. DOI: 10.3969/j.issn.1001-8891.2008.10.010 |
[9] | XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010 |
[10] | Damage Inspection of Flue Lining with Infrared Thermovision[J]. Infrared Technology , 2002, 24(1): 60-62. DOI: 10.3969/j.issn.1001-8891.2002.01.016 |