ZHOU Kun, PENG Xiong, ZHONG Xingu, ZHANG Wenhui, LI Qianxi, ZHAO Chao. Identification of Exposed Reinforcement Defects in Bridge Concrete Based on Hyperspectral Imaging[J]. Infrared Technology , 2024, 46(2): 216-224.
Citation: ZHOU Kun, PENG Xiong, ZHONG Xingu, ZHANG Wenhui, LI Qianxi, ZHAO Chao. Identification of Exposed Reinforcement Defects in Bridge Concrete Based on Hyperspectral Imaging[J]. Infrared Technology , 2024, 46(2): 216-224.

Identification of Exposed Reinforcement Defects in Bridge Concrete Based on Hyperspectral Imaging

More Information
  • Received Date: August 11, 2023
  • Revised Date: October 15, 2023
  • As a key mode of transportation, bridges bear the high pressure of traffic flow. Many bridges have defects before reaching their designed service life. Bridge-defect recognition based on visible light uses grayscale defect images and regional edge gradient information, which have limitations in complex environments. The radiation and absorption of spectral band signals by objects are detected by hyperspectral imaging, and the signals are transformed into images and graphics. The physical properties of the measured object are analyzed based on the position and intensity of the absorption peak. In this study, a method based on hyperspectral vision is proposed to identify exposed reinforcement bar defects in bridge concrete. Based on the spectral lines and spatial features of hyperspectral images of exposed reinforcement defects in bridge concrete combined with processing——Smooth filtering multivariate scattering calibration (SG-MSC), feature space transformation——First derivative method (FD), and feature variable selection algorithm——Competitive adapative reweighted sampling (CARS), the original spectral curve data were transformed into feature space to extract the corresponding feature values and display the band. The dataset was constructed based on spectral curve feature vectors, and a support vector machine algorithm was used to establish a prediction model for identifying exposed reinforcement defects. Considering a cross-river bridge as an example, a hyperspectral visual testing system was used to identify actual exposed reinforcement bar defects of the bridge. By performing smooth feature space transformation and feature extraction on the original spectral data, the differences were amplified, reducing the dimensionality of the 254 band data to 23 band data and achieving a model prediction accuracy of 94.6%. Hyperspectral vision has higher dimensional information than visible-light vision. Hence, the proposed model can effectively characterize material properties, is feasible, and has broad application prospects.
  • [1]
    李昌铸, 张劲泉, 夏晓霞, 等. 公路桥梁技术状况评定标准: JTG/T H21-2011[S]. 北京: 人民交通出版社, 2011.

    LI Changzhu, ZHANG Jinquan, XIA Xiaoxia, et al. Evaluation Standard for Technical Condition of Highway Bridges: JTG/T H21-2011[S]. Beijing: People's Transportation Press, 2011.
    [2]
    张海明. 土木工程结构中远距离非接触式表面缺陷及裂缝检测系统研究[D]. 北京: 中冶集团建筑研究总院, 2013.

    ZHANG Haiming. Research on Long-distance Non-contact Surface Defects and Crack Detection System in Civil Engineering Structures[D]. Beijing: MCC Construction Research Institute, 2013.
    [3]
    奚韵哲. 桥用爬壁机器人检测高墩裂缝技术研究[D]. 重庆: 重庆交通大学, 2019.

    XI Yunzhe. Research on the Technology of Detecting Cracks in High Piers by Wall-climbing Robot for Bridges[D]. Chongqing: Chongqing Jiaotong University, 2019.
    [4]
    ZHANG Cheng, YANG Zou, FENG Wang, et al. Towards fully automated unmanned aerial vehicle-enabled bridge inspection: Where are we at?[J]. Construction and Building Materials, 2022, 347: 128543. DOI: 10.1016/j.conbuildmat.2022.128543
    [5]
    赵天祺, 勾红叶, 陈萱颖, 等. 桥梁信息化及智能桥梁2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43: 268-279.

    ZHAO Tianqi, GOU Hongye, CHEN Xuanying, et al. Research progress of bridge informatization and intelligent bridge in 2020[J]. Journal of Civil and Environmental Engineering (Chinese and English) 2021, 43: 268-279.
    [6]
    钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61.

    ZHONG Xingu, PENG Xiong, SHEN Mingyan, et al. Feasibility study on bridge crack width identification based on unmanned aerial vehicle imaging[J]. China Civil Engineering Journal, 2019, 52(4): 52-61.
    [7]
    DING W, YANG H, YU K, SHEN Mingyan, . Crack detection and quantification for concrete structures using UAV and transformer[J]. Automation in Construction, 2023, 152: 04929.
    [8]
    刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.

    LIU Yufei, FAN Jiansheng, NIE Jianguo, et al. Review and prospect of digital image method recognition of structural surface cracks[J]. China Civil Engineering Journal, 2021, 54(6): 79-98.
    [9]
    鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11.

    BAO Yuequan, LI Hui. Civil engineering in the era of artificial intelligence[J]. China Civil Engineering Journal, 2019, 52(5): 1-11.
    [10]
    邓露, 褚鸿鹄, 龙砺芝, 等. 基于深度学习的土木基础设施裂缝检测综述[J]. 中国公路学报, 2023, 36(2): 1-21.

    DENG Lu, CHU Honghu, LONG Lizhi, et al. Review of crack detection in civil infrastructure based on deep learning[J]. China Journal of Highway and Transport, 2023, 36(2): 1-21.
    [11]
    勾红叶, 杨彪, 华辉, 等. 桥梁信息化及智能桥梁2019年度研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(5): 14-27.

    GOU Hongye, YANG Biao, HUA Hui, et al. Research progress of bridge informatization and intelligent bridge in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 14-27.
    [12]
    王保宪, 白少雄, 赵维刚. 基于特征增强学习的路面裂缝病害视觉检测方法[J]. 铁道科学与工程学报, 2022, 19(7): 1927-1935.

    WANG Baoxian, BAI Shaoxiong, ZHAO Weigang. Visual detection method of pavement crack disease based on feature enhancement learning[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1927-1935.
    [13]
    薛庆生, 李畅, 李婷婷, 等. 基于LVF的高光谱成像仪研制及应用[J]. 光子学报, 2021, 50(9): 203-214.

    XUE Qingsheng, LI Chang, LI Tingting, et al. Development and application of LVF-based hyperspectral imager[J]. Acta Photonica Sinica, 2021, 50(9): 203-214.
    [14]
    王冰冰, 喻文勇, 龙小祥, 等. 高分辨率卫星地面处理系统研制[J]. 遥感学报, 2021, 25(9): 1946-1963.

    WANG Bingbing, YU Wenyong, LONG Xiaoxiang, et al. Development of high-resolution satellite ground processing system[J]. Journal of Remote Sensing, 2021, 25(9): 1946-1963.
    [15]
    肖臣稷, 王卿, 王敏, 等. 基于高分五号卫星遥感数据的长江河口叶绿素a浓度反演[J]. 东华大学学报(自然科学版), 2022, 48(4): 92-99.

    XIAO Chenji, WANG Qing, WANG Min, et al. Inversion of chlorophyll a concentration in the estuary of the Yangtze River based on remote sensing data of Gaofen-5 satellite[J]. Journal of Donghua University (Natural Science Edition), 2022, 48(4): 92-99.
    [16]
    李笑芳, 王延仓, 顾晓鹤, 等. 基于高光谱技术建筑反射隔热涂料厚度检测技术的研究[J]. 光谱学与光谱分析, 2020, 40(8): 2552-2557.

    LI Xiaofang, WANG Yancang, GU Xiaohe, et al. Research on thickness detection technology of building reflective thermal insulation coating based on hyperspectral technology[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2552-2557.
    [17]
    Bonifazi G, Palmieri R, Serranti S. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging[J]. Construction and Building Materials, 2018, 169: 835-842 DOI: 10.1016/j.conbuildmat.2018.03.048
    [18]
    Bonifazi G, Capobianco G, Serranti S. Hyperspectral imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste[J]. Applied Sciences, 2019, 9(21): 4587. DOI: 10.3390/app9214587
    [19]
    Serranti S, Gargiulo A, Bonifazi G. Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system[J]. Resources, Conservation and Recycling, 2012, 61: 52-58 DOI: 10.1016/j.resconrec.2012.01.007
    [20]
    邵慧, 撒贝宁, 李伟, 等. 一种适用于古建筑建模的全波形高光谱激光雷达设计与实现[J]. 红外与激光工程, 2022, 51(8): 197-206.

    SHAO Hui, SA Beining, LI Wei, et al. Design and implementation of a full-waveform hyperspectral LiDAR for modeling of ancient buildings[J]. Infrared and Laser Engineering, 2022, 51(8): 197-206.
    [21]
    严阳, 华文深, 张炎, 等. 可见-近红外高光谱伪装目标特分析[J]. 红外技术, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011

    YAN Yang, HUA Wenshen, ZHANG Yan, et al. Special analysis of vision-near-infrared hyperspectral camouflage target[J]. Infrared Technology, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011
    [22]
    熊显名, 张乾坤, 秦祖军. 基于可见-近红外光谱的路面状况识别的研究[J]. 红外技术, 2021, 43(2): 131-137. http://hwjs.nvir.cn/article/id/532fdd18-b2cc-4513-bb61-46bca8e091dd

    XIONG Xianming, ZHANG Qiankun, QIN Zujun. Research on road condition recognition based on vision-near-infrared spectroscopy[J]. Infrared Technology, 2021, 43(2): 131-137. http://hwjs.nvir.cn/article/id/532fdd18-b2cc-4513-bb61-46bca8e091dd
    [23]
    田英慧, 金伟其, 赵志勇, 等. 基于反射光谱和图像的雪地伪装材料紫外检测技术研究[J]. 红外技术, 2017, 39(5): 469-474. http://hwjs.nvir.cn/article/id/hwjs201705014

    TIAN Yinghui, JIN Weiqi, ZHAO Zhiyong, et al. Research on ultraviolet detection technology of snow camouflage materials based on reflection spectra and images[J]. Infrared Technology, 2017, 39(5): 469-474. http://hwjs.nvir.cn/article/id/hwjs201705014
    [24]
    张海馨, 张正龙, 李晓奇, 等. 基于尾焰光谱分布特性分析的高速目标识别系统[J]. 红外技术, 2017, 39(7): 599-604. http://hwjs.nvir.cn/article/id/hwjs201707003

    ZHANG Haixin, ZHANG Zhenglong, LI Xiaoqi, et al. High-speed target recognition system based on analysis of tail flame spectral distribution characteristics[J]. Infrared Technology, 2017, 39(7): 599-604. http://hwjs.nvir.cn/article/id/hwjs201707003
    [25]
    程俊毅, 张显峰, 孙权, 等. 沥青路面老化状况遥感监测与评估模型建立及应用[J]. 遥感技术与应用, 2018, 33(5): 956-964.

    CHENG Junyi, ZHANG Xianfeng, SUN Quan, et al. Establishment and application of remote sensing monitoring and evaluation model for asphalt pavement aging condition[J]. Remote Sensing Technology and Application, 2018, 33(5): 956-964.
    [26]
    Ichi E, Dorafshan S. Spectral characterization of fouled railroad ballast using hyperspectral imaging[J]. Construction and Building Materials, 2023, 394: 132076. DOI: 10.1016/j.conbuildmat.2023.132076
    [27]
    Kim B, Cho S. Efflorescence assessment using hyperspectral imaging for concrete structures[J]. Smart Structures and Systems, An International Journal, 2018, 22(2): 209-221.
    [28]
    Huynh C P, Mustapha S, Runcie P, et al. Multi-class support vector machines for paint condition assessment on the Sydney Harbour Bridge using hyperspectral imaging[J]. Struct. Monit. Maint., 2015, 2(3): 181-197.
    [29]
    彭雄, 钟新谷, 赵超, 等. 基于无人机热成像的建筑饰面层脱粘缺陷识别[J]. 红外技术, 2022, 44(2): 189-197. http://hwjs.nvir.cn/article/id/565c3909-3e87-446f-8279-03f98a779184

    PENG Xiong, ZHONG Xingu, ZHAO Chao, et al. Desticking defect identification of building finishing layer based on UAV thermal imaging [J]. Infrared Technology, 2022, 44(2): 189-197. http://hwjs.nvir.cn/article/id/565c3909-3e87-446f-8279-03f98a779184
    [30]
    MENG Y, YUAN W, Aktilek E U, et al. Fine hyperspectral classification of rice varieties based on self-attention mechanism[J]. Ecological Informatics, 2023, 75: 102035. DOI: 10.1016/j.ecoinf.2023.102035
    [31]
    Schafer R W. What is a Savitzky-Golay filter?[J]. IEEE Signal Processing Magazine, 2011, 28(4): 111-117. DOI: 10.1109/MSP.2011.941097
    [32]
    Fearn T, Riccioli C, Garrido-Varo A, et al. On the geometry of SNV and MSC[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1): 22-26. DOI: 10.1016/j.chemolab.2008.11.006
    [33]
    Abulaiti Y, Sawut M, Maimaitiaili B, et al. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton[J]. Computers and Electronics in Agriculture, 2020, 171: 105275. DOI: 10.1016/j.compag.2020.105275
    [34]
    FENG S, Itoh Y, Parente M, et al. Hyperspectral band selection from statistical wavelet models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2111-2123.
    [35]
    LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica Chimica Acta, 2009, 648(1): 77-84.
  • Related Articles

    [1]LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, HAN Jinfeng, LIU Bingcong. Super Resolution Method for Power Equipment Infrared Imaging Based on Gradient Norm-ratio Prior[J]. Infrared Technology , 2023, 45(1): 40-48.
    [2]CHEN Tao, LI Weizhong, LIU Yanlei, WANG Fei, JIANG Chenghang, ZHOU Hong. Feasibility Analysis of On-Line Infrared Detection of Incomplete Penetration Defect in Metal Pipe Welded Joint[J]. Infrared Technology , 2019, 41(12): 1146-1150.
    [3]WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.
    [4]LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63.
    [5]A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274.
    [6]YUE Da-hao, LI Xiao-li, ZHANG Hao-jun, LI Ye-shu, FENG Li-chun, WU Nai-ming. IR Thermography Inspection of Wind Turbine Blades[J]. Infrared Technology , 2011, 33(10): 614-617. DOI: 10.3969/j.issn.1001-8891.2011.10.013
    [7]FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007
    [8]ZHOU Jian-long, CHENG Xue-qun, HU Yang, LI Xiao-gang. Damage Inspection and Evaluation of Industrial Furnace Wall Lining with Infrared Thermal Imager[J]. Infrared Technology , 2008, 30(10): 595-598. DOI: 10.3969/j.issn.1001-8891.2008.10.010
    [9]XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010
    [10]Damage Inspection of Flue Lining with Infrared Thermovision[J]. Infrared Technology , 2002, 24(1): 60-62. DOI: 10.3969/j.issn.1001-8891.2002.01.016
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (127) PDF downloads (29) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return