LI Yang, WU Lianquan, YANG Haitao, NIU Jinlin, CHU Xianteng, WANG Huapeng, ZOU Qinglong. A Small Target Detection Algorithm from UAV Perspective[J]. Infrared Technology , 2023, 45(9): 925-931.
Citation: LI Yang, WU Lianquan, YANG Haitao, NIU Jinlin, CHU Xianteng, WANG Huapeng, ZOU Qinglong. A Small Target Detection Algorithm from UAV Perspective[J]. Infrared Technology , 2023, 45(9): 925-931.

A Small Target Detection Algorithm from UAV Perspective

More Information
  • Received Date: July 01, 2022
  • Revised Date: January 17, 2023
  • The use of unmanned aerial vehicles (UAVs) for effective real-time monitoring of small targets, such as people, cars, and objects in the scene area, can help maintain public security. To address the problems of small-target occlusion, overlapping, and interference of complex environments in UAV images, a small-target detection algorithm is proposed from the UAV perspective. The algorithm uses the YOLOX network as the baseline system. First, the neck part of the network increases the output feature graph to reduce the receptive field, thereby improving the performance of the network details, and the detection head of the small-sized feature graph is deleted to improve the detection rate of small targets. Second, the anchor-free association mechanism is used to reduce the influence of noise in the truth tag while simultaneously reducing the parameter setting to speed up network operations. Finally, a true proportion coefficient is proposed for small targets to calculate position loss, thereby increasing the penalty for misjudging small targets, which makes the network more sensitive to small targets. Experiments on the VisDrone2021 dataset using this algorithm showed that the mAP value increased by 4.56%; the number of parameters decreased by 29.4%; the amount of computation decreased by 32.5%; and the detection speed increased by 19.7% compared with those of the baseline system, which is an advantage over other mainstream algorithms.
  • [1]
    武连全, 邹清龙. 警用无人机执法应用现状、问题与对策[J]. 北京警察学院学报, 2021(4): 36-43. DOI: 10.16478/j.cnki.jbjpc.20210507.002.

    WU L Q, ZOU Q L. Application status, problems and countermeasures of police UAV In law enforcement[J]. Journal of Beijing Police College, 2021(4): 36-43. DOI: 10.16478/j.cnki.jbjpc.20210507.002.
    [2]
    TONG K, WU Y, ZHOU F. Recent advances in small object detection based on deep learning: a review[J]. Image and Vision Computing, 2020, 97: 103910. DOI: 10.1016/j.imavis.2020.103910
    [3]
    Kisantal M, Wojna Z, Murawski J, et al. Augmentation for small object detection[J/OL]. arXiv preprint arXiv: 1902.07296, 2019. http://export.arxiv.org/abs/1902.07296.
    [4]
    Nguyen N D, Do T, Ngo T D, et al. An evaluation of deep learning methods for small object detection[J]. Journal of Electrical and Computer Engineering, 2020, 2020: 1-18.
    [5]
    Bharati P, Pramanik A. Deep learning techniques—R-CNN to mask R-CNN: a survey[J]. Computational Intelligence in Pattern Recognition, 2019, 999: 657-668.
    [6]
    CHEN C, LIU M Y, Tuzel O, et al. R-CNN for small object detection[C]//Asian Conference on Computer Vision, 2016: 214-230.
    [7]
    Keles M C, Salmanoglu B, Guzel M S, et al. Evaluation of YOLO models with sliced inference for small object detection[J/OL]. arXiv preprint arXiv: 2203.04799, 2022. https://arxiv.org/abs/2203.04799.
    [8]
    Ziming C, HAN Y, Lingjun K, et al. Multi-scene small object detection with modified YOLOv4[C]//Journal of Physics: Conference Series, 2022, 2253(1): 012027.
    [9]
    奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J/OL]. 航空学报: 1-15. [2022-07-01]. http://kns.cnki.net/kcms/detail/11.1929.V.20220509.2316.010.html.

    FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J/OL]. Acta Aeronautica et Astronautica Snica: 1-15. [2022-07-01]. http://kns.cnki.net/kcms/detail/11.1929.V.20220509.2316.010.html
    [10]
    Akyon F C, Onur Altinuc S, Temizel A. Slicing aided hyper inference and fine-tuning for small object detection[C]// IEEE International Conference on Image Processing (ICIP), 2022: 966-970, Doi: 10.1109/ICIP46576.2022.9897990.
    [11]
    GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[J/OL]. arXiv preprint arXiv: 2107.08430, 2021. https://doi.org/10.48550/arXiv.2107.08430
    [12]
    武连全, 楚宪腾, 杨海涛, 等. 基于改进YOLOX的X射线违禁物品检测[J]. 红外技术, 2023, 45(4): 427-435. http://hwjs.nvir.cn/article/id/7e45bcc9-aca9-49c9-8f88-0d8c22e5c7de

    WU L Q, CHU X T, YANG H T, et al. X-ray detection of prohibited items based on improved YOLOX[J]. Infrared Technology, 2023, 45(4): 427-435. http://hwjs.nvir.cn/article/id/7e45bcc9-aca9-49c9-8f88-0d8c22e5c7de
    [13]
    JIANG P, Ergu D, LIU F, et al. A Review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. DOI: 10.1016/j.procs.2022.01.135
    [14]
    WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
    [15]
    ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J/OL]. arXiv preprint arXiv: 2001.06303, 2020. https://doi.org/10.48550/arXiv.2001.06303
    [16]
    WAN J, ZHANG B, ZHAO Y, et al. Vistrongerdet: stronger visual information for object detection in VisDrone images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2820-2829.
    [17]
    ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
    [18]
    Sineglazov V, Kalmykov V. Image processing from unmanned aerial vehicle using modified YOLO detector[J]. Electronics and Control Systems, 2021, 3(69): 37-42. DOI: 10.18372/1990-5548.69.16425
  • Related Articles

    [1]DENG Changzheng, LIU Mingze, FU Tian, GONG Mengqing, LUO Bingjie. Infrared Image Recognition of Substation Equipment Based on Improved YOLOv7-Tiny Algorithm[J]. Infrared Technology , 2025, 47(1): 44-51.
    [2]WANG Chongwen, PENG Tinghai, LUO Rui, LIU Jian, YANG Yuping, WANG Shijin, YAN Tingyu, GE Fan, LIU Yanfang, LIU Yunhong. Tropical Marine Environmental Adaptability of Germanium Coated Infrared Antireflection Film[J]. Infrared Technology , 2024, 46(8): 957-964.
    [3]ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater Image Enhancement Based on Improved Histogram Matching and Adaptive Equalization[J]. Infrared Technology , 2024, 46(5): 532-538.
    [4]YANG Yuping, LIU Jian, ZHOU Xiaoyu, ZHAO Hongkun, LIU Yanfang, WANG Chongwen, ZHAO Yuanrong, GE Fan, XIAO Jianjun, LUO Rui, YANG Pinjie. Environmental Adaptability of Infrared Antireflection Films in Humid Hot Rain Forest[J]. Infrared Technology , 2021, 43(12): 1197-1201.
    [5]TANG Changming, ZHONG Jianfeng, ZHONG Shuncong, CHEN Man, FU Xibin, HUANG Xuebin. Ultrasound Infrared Thermography Defect Recognition Based on Improved Adaptive Genetic Algorithm with Two-Dimensional Maximum Entropy[J]. Infrared Technology , 2020, 42(8): 801-808.
    [6]WANG Chongwen, ZHAO Hongkun, LIU Jian, WANG Qiaofang, ZHU Guangyu, YANG Yuping, LUO Rui, ZHAO Yuanrong, LI Wei, LIU Yanfang, GE Fan. Dissecting the Adaptability of OLED Displays in Tropical Rainforest[J]. Infrared Technology , 2020, 42(6): 542-546.
    [7]JING Weiguo, SUN Mingzhao, LI Yongtao. Novel Experimental Method of Intense Light Adaptability of Night Vision Systems with Large Dynamic Range[J]. Infrared Technology , 2019, 41(7): 689-692.
    [8]LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61.
    [9]Improved Adaptive Segmentation Non-uniformity Correction Method for IRFPA[J]. Infrared Technology , 2017, 39(3): 209-213.
    [10]ZHANG Jin-cheng, LIAO Shou-yi, ZHANG Zuo-yu, SU De-lun, YAN Xun-liang. Real-time Improvement for Resistor Array Nonuniformity Correction[J]. Infrared Technology , 2015, 37(11): 921-925.
  • Cited by

    Periodical cited type(18)

    1. 田超华,赵欢,黄鸿基,孙伟可,王学峰. 基于深度学习的配电网开关柜电晕放电检测设计. 电子设计工程. 2025(01): 51-54+60 .
    2. 韩勇勇. 基于小波变换的PSO优化紫外双通道图像融合研究. 中国照明电器. 2025(02): 95-102 .
    3. 刘俊,王鲸,周炎生. 综合消磁工作线圈电缆接头击穿故障分析及应对策略. 广东造船. 2025(01): 59-62 .
    4. 朱杰,冯新颖,许网俊,范佳佳,杨赟. 基于YOLOV3神经网络的轨道车辆局部放电缺陷检测方法. 电工技术. 2025(03): 194-196 .
    5. 江澎,康正军,陈涛,冯一飞,吴琼. 融合人工智能与无线通信的热成像局放检测技术研究. 长江信息通信. 2024(01): 152-154 .
    6. 赵昊然,陆智勇,江明,刘立石. 小波包能量谱和神经网络的开关柜局部放电自动检测方法. 自动化与仪表. 2024(02): 92-96 .
    7. 汪可夫,胡志祥. 预制舱式变电站负荷支路漏电监测方法设计. 自动化仪表. 2024(07): 55-59+69 .
    8. 江熠,金坤鹏,钱锡颖,任一舟. 基于局部放电测试技术的避雷器状态诊断方法研究. 计算机测量与控制. 2024(07): 36-43 .
    9. 章铖. 基于红外热成像的变电站支柱绝缘子缺陷自动检测方法. 自动化技术与应用. 2024(08): 16-19+45 .
    10. 邵钦禹. 电力电缆的带电诊断与故障处理技术分析. 集成电路应用. 2024(09): 368-369 .
    11. 刘秀婷,李烨,高峰,马味敏. 高压电缆局部放电检测及识别系统研究. 电子测量技术. 2024(17): 97-107 .
    12. 胡梦捷. 基于非接触式测温技术的光伏直流侧拉弧线缆发热监测. 电线电缆. 2024(06): 31-34 .
    13. 韩勇勇,宋鹏,刘成涛. 基于ZYNQ 7020的双通道紫外放电检测系统设计. 国外电子测量技术. 2024(12): 115-120 .
    14. 苗堃,陈垒,李沛东,赵亚军,李健,郑城市,张胜利. 基于涡流技术的高压电缆铅封缺陷识别仿真研究. 环境技术. 2023(02): 139-145 .
    15. 龙丽名. 低压电线电缆检测手段及质量控制研究. 科技资讯. 2023(11): 42-45 .
    16. 何维晟,吴照国,徐扬,杜茂春,王谦,李勇,石钧仁. 高压电缆终端局部放电超声信号传输特性仿真分析. 高压电器. 2023(11): 48-55+64 .
    17. 刘杰,夏彦卫,贾伯岩,吴国强,殷庆栋. 基于高精度温度传感器的多股碳纤维导线潜伏性缺陷检测方法. 电子测量与仪器学报. 2023(11): 65-71 .
    18. 焦宇阳,段海南,张宏军,郑福建,朱进,刘新. 一种基于相关性分析和模糊规则的高压电缆状态评价方法. 电力大数据. 2022(10): 53-61 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return