ZHANG Yabang, LI Jiayue, WANG Manli. An Algorithm for Low-Light Image Enhancement in Coal Mines Based on HSV Space[J]. Infrared Technology , 2024, 46(1): 74-83.
Citation: ZHANG Yabang, LI Jiayue, WANG Manli. An Algorithm for Low-Light Image Enhancement in Coal Mines Based on HSV Space[J]. Infrared Technology , 2024, 46(1): 74-83.

An Algorithm for Low-Light Image Enhancement in Coal Mines Based on HSV Space

More Information
  • Received Date: May 11, 2023
  • Revised Date: August 06, 2023
  • A low light image enhancement method based on HSV space is proposed to address the issues of low contrast, uneven lighting, and weak detail information in images collected underground in coal mines. This method is based on the Hue-Saturation-Luminance(HSV) color space of the image, and enhances the contrast of the main structure and edge details of the brightness channel V channel in low light images. This can better suppress image detail loss and reproduce the contour and texture details in the original image. Firstly, the input low light image of the coal mine underground is converted into HSV space, and the main structure and contour edges of the extracted V-channel image are extracted and preserved using relative total variation filtering (RTV) and improved side window filtering (SWF). After nonlinear grayscale stretching, principal component analysis fusion technology (PCA) is used to reconstruct the V-channel image, which fuses the main structure and fine structure of the V-channel image. Finally, the image is synthesized, Complete image enhancement. Through experimental verification, the proposed low light image enhancement method for coal mine underground based on HSV space performs well in color and edge blur processing. Quantitative and qualitative experiments were conducted on images in environments such as coal mine underground working faces. The results show that compared with the six algorithms, the proposed method performs better in improving image contrast, enhancing image naturalness, and restoring image details.
  • [1]
    钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13.

    QIAN M, XU J, WANG J. Further on the sustainable mining of coal[J]. Journal of China Coal Society, 2018, 43(1): 1-13.
    [2]
    王满利, 张航, 李佳悦, 等. 基于深度神经网络的煤矿矿井下低光照图像增强算法[J/OL]. 煤炭科学技术: 1-13. [3-03-27]. https://doi.org/10.13199/j.cnki.cst.2022-1626.

    WANG M, ZHANG H, LI J, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines [J/OL]. Coal Science and Technology: 1-13. [2023-03-27]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
    [3]
    田子建, 王满利, 张元刚. 基于双域分解的图像增强算法[J]. 电子学报, 2020, 48(7): 1311-1320. DOI: 10.3969/j.issn.0372-2112.2020.07.009

    TIAN Z, WANG M, ZHANG Y. Image enhancement algorithm based on dual domain decomposition[J]. Acta Eletronica Sinica, 2020, 48(7): 1311-1320. DOI: 10.3969/j.issn.0372-2112.2020.07.009
    [4]
    李少荣. 基于改进直方图均衡化的红外图像增强技术的研究[J]. 工业控制计算机, 2022, 35(12): 52-53, 56.

    LI S. Infrared image enhancement technology based on improved histogram equalization[J]. Industrial Control Computer, 2022, 35(12): 52-53, 56.
    [5]
    黄辉先, 陈凡浩. 基于注意力机制和Retinex的低照度图像增强方法[J]. 激光与光电子学进展, 2020, 57(20): 53-60.

    HUANG H, CHEN F. Low-illumination image enhancement method based on attention mechanism and retinex[J]. Laser & Optoelectronics Progress, 2020, 57(20): 53-60.
    [6]
    吕侃徽, 张大兴. 基于自适应直方图均衡化耦合拉普拉斯变换的红外图像增强算法[J]. 光学技术, 2021, 47(6): 747-753.

    LV K, ZHANG D. Infrared image enhancement algorithm based on adaptive histogram equalization coupled with Laplace transform[J]. Optical Technique, 2021, 47(6): 747-753.
    [7]
    HUANG H X, CHEN F H. Low-illumination image enhancement method based on attention mechanism and Retinex[J]. Laser & Optoelectronics Progress, 2020, 57(20): 53-60.
    [8]
    GUO X J, LI Y, LING H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
    [9]
    WANG S H, ZHANG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. DOI: 10.1109/TIP.2013.2261309
    [10]
    YING Z Y, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL]. arXiv preprint arXiv: 1711.00591, 2017. https://arxiv.org/abs/1711.00591.
    [11]
    LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust Retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. DOI: 10.1109/TIP.2018.2810539
    [12]
    DONG X, GUAN W, YI P, et al. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia & Expo, 2011: 1-6.
    [13]
    Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. DOI: 10.1016/j.patcog.2016.06.008
    [14]
    TAO L, ZHU C, XIANG G Q, et al. LLCNN: A convolutional neural network for low-light image enhancement[C]//IEEE Visual Communications & Image Processing, 2017: 10-13.
    [15]
    WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[C]//British Machine Vision Conference, 2018: 1-12.
    [16]
    CHEN Y S, WANG Y C, KAO M H, et al. Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs[C]// IEEE/CVF Conference on Computer Vision & Pattern Recognition, 2018: 6306-6314.
    [17]
    ZHANG Y H, GUO X J, MA J Y, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129: 1013-1037. DOI: 10.1007/s11263-020-01407-x
    [18]
    CUI J X. Image style migration algorithm based on HSV color model[C]//IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 2022: 111-114.
    [19]
    XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 1-10.
    [20]
    YIN H, GONG Y H, QIU G P. Side window filtering[J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 8750-8758.
    [21]
    LV F F, LU F, WU J H, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//British Machine Vision Conference, 2018: 220-233.
    [22]
    LI C Y, GUO C L, Chen C L. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238.
    [23]
    Mahmou A. Single image super-resolution algorithm using PSNR in the wavelet domain[J]. Journal of Advanced Research in Dynamical and Control Systems, 2020, 12: 677-691.
    [24]
    朱新山, 姚思如, 孙彪, 等. 图像质量评价: 融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报, 2018, 50(5): 121-128.

    ZHU X, YAO S, SUN B, et al. Image quality assessment: Combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 121-128.
    [25]
    孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127-134.

    SUN Y, YANG Y, LIU D, et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics & Information Technology, 2016, 38(1): 127-134.
  • Related Articles

    [1]CHENG Hongchang, DANG Xiaogang, FENG Danqing, SU Yue, ZUO Zhiwei, BAI Xiaofeng, LI Zhoukui, SHI Hongli, YAN Lei, HOU Zhipeng, YAO Ze, SHI Feng. Development of Low-Light-Level Night Vision Equipment Abroad[J]. Infrared Technology , 2024, 46(12): 1399-1410.
    [2]NIU Qun, SHI Lixia, WANG Jinsong, TANG Zhuo. Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion[J]. Infrared Technology , 2024, 46(10): 1162-1171.
    [3]BAI Xueping, ZHONG Yujie, YANG Hong, ZHENG Yu, HE Da, YI Xuedong, HUANG Fang. An EMCCD Imaging Sensor Capturing Images from Sunlight to Starlight[J]. Infrared Technology , 2023, 45(3): 315-321.
    [4]FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194.
    [5]JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051.
    [6]JING Weiguo, WANG Hongpei, LUAN Guangqi, WANG Chenhui. Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast[J]. Infrared Technology , 2022, 44(4): 389-396.
    [7]LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894.
    [8]GAO Tianyang, CAO Fengmei, WANG Xia, CUI Zhigang. Direct Coupling of Low Light Image Intensifier with Large Size CMOS[J]. Infrared Technology , 2021, 43(6): 537-542.
    [9]LIU Zhi-chao, FAN Gui-hua, GUO Hui-chao, FAN You-chen. The New Low Light Level Imaging Devices and It’s Applications[J]. Infrared Technology , 2015, (8): 701-706.
    [10]New Development of Low Light Level Imaging Sensor Technology[J]. Infrared Technology , 2013, (9): 1-14.

Catalog

    Article views (154) PDF downloads (36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return