Citation: | ZHANG Yabang, LI Jiayue, WANG Manli. An Algorithm for Low-Light Image Enhancement in Coal Mines Based on HSV Space[J]. Infrared Technology , 2024, 46(1): 74-83. |
[1] |
钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13.
QIAN M, XU J, WANG J. Further on the sustainable mining of coal[J]. Journal of China Coal Society, 2018, 43(1): 1-13.
|
[2] |
王满利, 张航, 李佳悦, 等. 基于深度神经网络的煤矿矿井下低光照图像增强算法[J/OL]. 煤炭科学技术: 1-13. [3-03-27]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
WANG M, ZHANG H, LI J, et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines [J/OL]. Coal Science and Technology: 1-13. [2023-03-27]. https://doi.org/10.13199/j.cnki.cst.2022-1626.
|
[3] |
田子建, 王满利, 张元刚. 基于双域分解的图像增强算法[J]. 电子学报, 2020, 48(7): 1311-1320. DOI: 10.3969/j.issn.0372-2112.2020.07.009
TIAN Z, WANG M, ZHANG Y. Image enhancement algorithm based on dual domain decomposition[J]. Acta Eletronica Sinica, 2020, 48(7): 1311-1320. DOI: 10.3969/j.issn.0372-2112.2020.07.009
|
[4] |
李少荣. 基于改进直方图均衡化的红外图像增强技术的研究[J]. 工业控制计算机, 2022, 35(12): 52-53, 56.
LI S. Infrared image enhancement technology based on improved histogram equalization[J]. Industrial Control Computer, 2022, 35(12): 52-53, 56.
|
[5] |
黄辉先, 陈凡浩. 基于注意力机制和Retinex的低照度图像增强方法[J]. 激光与光电子学进展, 2020, 57(20): 53-60.
HUANG H, CHEN F. Low-illumination image enhancement method based on attention mechanism and retinex[J]. Laser & Optoelectronics Progress, 2020, 57(20): 53-60.
|
[6] |
吕侃徽, 张大兴. 基于自适应直方图均衡化耦合拉普拉斯变换的红外图像增强算法[J]. 光学技术, 2021, 47(6): 747-753.
LV K, ZHANG D. Infrared image enhancement algorithm based on adaptive histogram equalization coupled with Laplace transform[J]. Optical Technique, 2021, 47(6): 747-753.
|
[7] |
HUANG H X, CHEN F H. Low-illumination image enhancement method based on attention mechanism and Retinex[J]. Laser & Optoelectronics Progress, 2020, 57(20): 53-60.
|
[8] |
GUO X J, LI Y, LING H B. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
|
[9] |
WANG S H, ZHANG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22(9): 3538-3548. DOI: 10.1109/TIP.2013.2261309
|
[10] |
YING Z Y, LI G, GAO W. A bio-inspired multi-exposure fusion framework for low-light image enhancement[EB/OL]. arXiv preprint arXiv: 1711.00591, 2017. https://arxiv.org/abs/1711.00591.
|
[11] |
LI M D, LIU J Y, YANG W H, et al. Structure-revealing low-light image enhancement via robust Retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. DOI: 10.1109/TIP.2018.2810539
|
[12] |
DONG X, GUAN W, YI P, et al. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia & Expo, 2011: 1-6.
|
[13] |
Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. DOI: 10.1016/j.patcog.2016.06.008
|
[14] |
TAO L, ZHU C, XIANG G Q, et al. LLCNN: A convolutional neural network for low-light image enhancement[C]//IEEE Visual Communications & Image Processing, 2017: 10-13.
|
[15] |
WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[C]//British Machine Vision Conference, 2018: 1-12.
|
[16] |
CHEN Y S, WANG Y C, KAO M H, et al. Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs[C]// IEEE/CVF Conference on Computer Vision & Pattern Recognition, 2018: 6306-6314.
|
[17] |
ZHANG Y H, GUO X J, MA J Y, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129: 1013-1037. DOI: 10.1007/s11263-020-01407-x
|
[18] |
CUI J X. Image style migration algorithm based on HSV color model[C]//IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 2022: 111-114.
|
[19] |
XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 1-10.
|
[20] |
YIN H, GONG Y H, QIU G P. Side window filtering[J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 8750-8758.
|
[21] |
LV F F, LU F, WU J H, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//British Machine Vision Conference, 2018: 220-233.
|
[22] |
LI C Y, GUO C L, Chen C L. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238.
|
[23] |
Mahmou A. Single image super-resolution algorithm using PSNR in the wavelet domain[J]. Journal of Advanced Research in Dynamical and Control Systems, 2020, 12: 677-691.
|
[24] |
朱新山, 姚思如, 孙彪, 等. 图像质量评价: 融合视觉特性与结构相似性指标[J]. 哈尔滨工业大学学报, 2018, 50(5): 121-128.
ZHU X, YAO S, SUN B, et al. Image quality assessment: Combining the characteristics of HVS and structural similarity index[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 121-128.
|
[25] |
孙彦景, 杨玉芬, 刘东林, 等. 基于内在生成机制的多尺度结构相似性图像质量评价[J]. 电子与信息学报, 2016, 38(1): 127-134.
SUN Y, YANG Y, LIU D, et al. Multiple-scale structural similarity image quality assessment based on internal generative mechanism[J]. Journal of Electronics & Information Technology, 2016, 38(1): 127-134.
|
[1] | CHENG Hongchang, DANG Xiaogang, FENG Danqing, SU Yue, ZUO Zhiwei, BAI Xiaofeng, LI Zhoukui, SHI Hongli, YAN Lei, HOU Zhipeng, YAO Ze, SHI Feng. Development of Low-Light-Level Night Vision Equipment Abroad[J]. Infrared Technology , 2024, 46(12): 1399-1410. |
[2] | NIU Qun, SHI Lixia, WANG Jinsong, TANG Zhuo. Low-light Image Enhancement Based on Detail Preservation and Brightness Fusion[J]. Infrared Technology , 2024, 46(10): 1162-1171. |
[3] | BAI Xueping, ZHONG Yujie, YANG Hong, ZHENG Yu, HE Da, YI Xuedong, HUANG Fang. An EMCCD Imaging Sensor Capturing Images from Sunlight to Starlight[J]. Infrared Technology , 2023, 45(3): 315-321. |
[4] | FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194. |
[5] | JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051. |
[6] | JING Weiguo, WANG Hongpei, LUAN Guangqi, WANG Chenhui. Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast[J]. Infrared Technology , 2022, 44(4): 389-396. |
[7] | LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894. |
[8] | GAO Tianyang, CAO Fengmei, WANG Xia, CUI Zhigang. Direct Coupling of Low Light Image Intensifier with Large Size CMOS[J]. Infrared Technology , 2021, 43(6): 537-542. |
[9] | LIU Zhi-chao, FAN Gui-hua, GUO Hui-chao, FAN You-chen. The New Low Light Level Imaging Devices and It’s Applications[J]. Infrared Technology , 2015, (8): 701-706. |
[10] | New Development of Low Light Level Imaging Sensor Technology[J]. Infrared Technology , 2013, (9): 1-14. |