ZHOU Shikai, LI Zhengqiang, YAO Qian, WU Wenfei, XIE Yanqing, FAN Cheng. A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing[J]. Infrared Technology , 2025, 47(3): 272-280.
Citation: ZHOU Shikai, LI Zhengqiang, YAO Qian, WU Wenfei, XIE Yanqing, FAN Cheng. A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing[J]. Infrared Technology , 2025, 47(3): 272-280.

A Simplified Radiative Transfer Calculation Scheme for Transmittance in Satellite Thermal Infrared Remote Sensing

More Information
  • Received Date: March 06, 2024
  • Revised Date: May 26, 2024
  • Atmospheric radiative transfer in the thermal infrared spectrum is influenced by various factors, and atmospheric transmittance is a critical parameter. Currently, researching atmospheric transmittance within 8-14 μm thermal infrared spectrum remains challenging because of numerous elusive input background parameters. Consequently, a simplified parameterization scheme for thermal infrared radiative transfer in satellite remote sensing is proposed. Using the moderate resolution atmospheric transmission (MODTRAN) model, the impact parameters of atmospheric transmittance were quantitatively simulated and analyzed, to identify key parameters, leading to the development of a MODTRAN-model-based simplified scheme. Atmospheric transmittance values calculated by the MODTRAN model and simplified scheme were compared and validated at the central wavelengths of the two thermal infrared channels of a medium resolution spectral imager-LL (MERSI-LL). The R2 value exceeded 0.99, and the root mean-square error (RMSE) was below 0.007458, indicating high accuracy. The simplified scheme relies solely on the view zenith angle and water vapor column, eliminating the need for CO2, O3, and aerosol optical depth. Compared with the MODTRAN model, the simplified scheme reduces the number of input parameters and enhances computational efficiency. This study offers theoretical support for atmospheric correction of thermal infrared data.

  • [1]
    赵帅阳, 景欣, 张飞舟, 等. 中波红外大气透过率特性分析[J]. 激光与红外, 2017, 47(5): 568-574. DOI: 10.3969/j.issn.1001-5078.2017.05.009

    ZHAO Shuaiyang, JING Xin, ZHANG Feizhou, et al. Analysis on atmospheric transmittance characteristics in middle infrared (3~5 μm) spectrum[J]. Laser & Infrared, 2017, 47(5): 568-574. DOI: 10.3969/j.issn.1001-5078.2017.05.009
    [2]
    张安琪, 邰会强, 高佳星, 等. 基于大气参数修正的时变大气透过率测试方法研究[J]. 燃气涡轮试验与研究, 2023, 36(2): 39-44. DOI: 10.3969/j.issn.1672-2620.2023.02.007

    ZHANG Anqi, TAI Huiqiang, GAO Jiaxing, et al. Time-varying atmospheric transmittance measurement method based on atmospheric parameter correction[J]. Gas Turbine Experiment and Research, 2023, 36(2): 39-44. DOI: 10.3969/j.issn.1672-2620.2023.02.007
    [3]
    Kim Jongchan, Kim Sungho. Temperature estimation adaptive to variables over distance using infrared–LiDAR[J]. Applied Sciences, 2021, 11(9): 4063. DOI: 10.3390/app11094063
    [4]
    马刚, 郭杨, 苏婧, 等. 卫星探测通道晴空大气吸收透过率快速计算研究进展[J]. 地球物理学报, 2023, 66(6): 2275-2291.

    MA Gang, GUO Yang, SU Jing, et al. An overview of fast calculation to clear atmospheric absorption transmittance of satellite channel[J]. Chinese Journal of Geophysics, 2023, 66(6): 2275-2291.
    [5]
    何光聪, 胡月明, 肖志峰. 基于TM8卫星热红外数据地表温度反演及其应用[J]. 广东农业科学, 2015, 42(6): 146-153, 193.

    HE Guangcong, HU Yueming, XIAO Zhifeng. Land surface temperature retrieval based on TM8 thermal infrared data and its application[J]. Guangdong Agricultural Sciences, 2015, 42(6): 146-153, 193.
    [6]
    陈秀红, 魏合理, 吕炜煜, 等. CART软件计算的红外大气透过率和实测值比较[J]. 激光与红外, 2009, 39(4): 403-406. DOI: 10.3969/j.issn.1001-5078.2009.04.015

    CHEN Xiuhong, WEI Heli, LYU Weiyu, et al. Comparison of infrared atmospheric transmittance calculated by CART software with measured values[J]. Laser & Infrared, 2009, 39(4): 403-406. DOI: 10.3969/j.issn.1001-5078.2009.04.015
    [7]
    李晋华, 王志斌, 陈媛媛, 等. 近红外氧气A带大气透过率的计算[J]. 激光与红外, 2013, 43(10): 1142-1145. DOI: 10.3969/j.issn.1001-5078.2013.10.13

    LI Jinhua, WANG Zhibin, CHEN Yuanyuan, et al. Calculation of near infrared oxygen A-band atmospheric transmittance[J]. Laser & Infrared, 2013, 43(10): 1142-1145. DOI: 10.3969/j.issn.1001-5078.2013.10.13
    [8]
    王充, 汪卫华. 红外辐射大气透过率研究综述[J]. 装备环境工程, 2011, 8(4): 73-76.

    WANG Chong, WANG Weihua. Summarization on atmospheric transmittance of infrared radiation[J]. Equipment Environmental Engineering, 2011, 8(4): 73-76.
    [9]
    赵军, 张建, 杜翠兰. 红外辐射大气透过率修正函数[J]. 激光与红外, 2006, 36(9): 866-867. DOI: 10.3969/j.issn.1001-5078.2006.09.012

    ZHAO Jun, ZHANG Jian, DU Cuilan. Revisable function of IR-radiation atmospheric transmissivity[J]. Laser & Infrared, 2006, 36(9): 866-867. DOI: 10.3969/j.issn.1001-5078.2006.09.012
    [10]
    雷忠腾. 基于MODIS热红外分裂窗波段反演晴空大气水汽的研究[D]. 青岛: 山东科技大学, 2020.

    LEI Zhongteng. Atmosphere water vapor retrieval over clear sky on land based on modis thermal infrared splitting-window band[D]. Qingdao: Shandong University of Science and Technology, 2020.
    [11]
    李云红, 张龙, 王延年. 红外热像仪外场测温的大气透过率二次标定[J]. 光学精密工程, 2010, 18(10): 2143-2149.

    LI Yunhong, ZHANG Long, WANG Yannian. Second calibration of at mospheric trans mission coefficients on temperature measurement of infrared thermal imager in fields[J]. Optics and Precision Engineering, 2010, 18(10): 2143-2149.
    [12]
    王文慧, 王高, 张猛. 红外辐射大气透过率影响因素的研究[J]. 激光与红外, 2017, 47(3): 308-312.

    WANG Wenhui, WANG Gao, ZHANG Meng. Study on influence factors of atmospheric transmittance of infrared radiation[J]. Laser & Infrared, 2017, 47(3): 308-312.
    [13]
    ZENG Hui, REN Huazhong, NIE Jing, et al. Land surface temperature and emissivity retrieval from nighttime middle and thermal infrared images of chinese fengyun-3D MERSI-Ⅱ[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7724-7733. DOI: 10.1109/JSTARS.2021.3098579
    [14]
    吴骅, 李秀娟, 李召良, 等. 高光谱热红外遥感: 现状与展望[J]. 遥感学报, 2021, 25(8): 1567-1590.

    WU Hua, LI Xiujuan, LI Zhaoliang, et al. Hyperspectral thermal infrared remote sensing: current status and perspectives[J]. National Remote Sensing Bulletin, 2021, 25(8): 1567-1590.
    [15]
    孟鹏, 胡勇, 巩彩兰, 等. 热红外遥感地表温度反演研究现状与发展趋势[J]. 遥感信息, 2012, 27(6): 118-123, 132.

    MENG Peng, HU Yong, GONG Cailan, et al. Thermal infrared remote sensing of surface temperature inversion: current status and future prospects[J]. Remote Sensing Information, 2012, 27(6): 118-123, 132.
    [16]
    李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016, 20(5): 899-920.

    LI Zhaoliang, DUAN Sibo, TANG Bohui, et al. Review of methods for land surface temperature derived from thermal infrared remotely sensed data[J]. National Remote Sensing Bulletin, 2016, 20(5): 899-920.
    [17]
    姚前, 许华, 樊程, 等. 一种应用于卫星中红外遥感的辐射传输简化计算方案[J]. 红外与毫米波学报, 2024, 43(3): 375-390.

    YAO Qian, XU Hua, FAN Cheng, et al. A simplified parameterization scheme of mid-infrared radiative transfer for satellite remote sensing[J]. Journal of Infrared And Millimeter Waves, 2024, 43(3): 375-390.
  • Related Articles

    [1]WU Wenfei, LI Zhengqiang, YAO Qian, ZHOU Shikai, XU Hua, CHEN Zhenting, JIANG Qifeng. Simplified Calculation Method of FY-3D Satellite MERSI-Ⅱ Thermal Infrared Channel Split-Window Simulation[J]. Infrared Technology , 2025, 47(4): 410-420.
    [2]MAO Jingxiang, GUO Jianhua, LI Lihua, KONG Linglei, WANG Zhengkai. Calculation of Parameters for Long Wave Infrared FPA Detectors Applied in Low-temperature Background[J]. Infrared Technology , 2023, 45(5): 553-559.
    [3]CHI Guochun, SUN Hao, WANG Liang, LIU Xiangde, RAO Qichao. The Analysis of Cooling Parameters of Infrared Detector Assembly[J]. Infrared Technology , 2019, 41(7): 683-688.
    [4]WEI Xiaomei, YANG Jian, FENG Gang, JIA Tao, MENG Jin, SU Xiaohui, ZHANG Xiang, KANG LI, CAO Honghong. Design of Infrared Multi-parameters Analysis Meter for Coal[J]. Infrared Technology , 2016, 38(6): 509-513.
    [5]WU Xiao-di, YANG Ming, LV Xiang-yin, YANG Hua. Effect of Parameters of Thermal Control Coating on Dynamic Radiation Characteristic of Satellite[J]. Infrared Technology , 2009, 31(12): 727-730. DOI: 10.3969/j.issn.1001-8891.2009.12.012
    [6]LI Wei, SHEN Zhen-kang, LI Biao. Solving Parameters of Affine Transformation Based on ACO[J]. Infrared Technology , 2007, 29(11): 662-665. DOI: 10.3969/j.issn.1001-8891.2007.11.011
    [7]The Study of the Definition and Measurement Methods of Characteristic Parameters of IRFPA[J]. Infrared Technology , 2007, 29(4): 211-214. DOI: 10.3969/j.issn.1001-8891.2007.04.006
    [8]WANG Qun, ZHU Mu-dan, ZHAO Liang. Parameter Test of Infrared Detectors[J]. Infrared Technology , 2006, 28(10): 599-601. DOI: 10.3969/j.issn.1001-8891.2006.10.010
    [9]Evaluation of Binary Optics Manufacturing Parameters[J]. Infrared Technology , 2004, 26(6): 13-16. DOI: 10.3969/j.issn.1001-8891.2004.06.004
    [10]A Study about the Pyroelectric IR Detector's Parameters Measurement[J]. Infrared Technology , 2002, 24(3): 41-43. DOI: 10.3969/j.issn.1001-8891.2002.03.011

Catalog

    Article views (40) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return