WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.
Citation: WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.

Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm

More Information
  • Received Date: June 01, 2022
  • Revised Date: August 01, 2022
  • A joint likelihood drop shadow construction method for the selection of a bimodal infrared image fusion algorithm is proposed. It aims at the demand for the cooperative and optimal fusion of dissimilar disparity features in real scenes of bimodal infrared image fusion and the limitation that the existing disparity feature attributes cannot be effectively driven by the targeted adjustment of the fusion algorithm according to the changes in multiple attributes of the disparity features, resulting in a poor fusion effect. First, we calculate the fusion effectiveness of different disparity features under the multimodal infrared image fusion algorithm and statistical disparity feature distribution characteristics. We then construct the likelihood distribution of the disparity feature fusion effectiveness and fit the likelihood distribution function by the least squares estimation method. Subsequently, we compare and analyze the likelihood distribution of different disparity feature fusion effectiveness by the merit comparison method and determine the projection weights of the disparity feature likelihood distribution function. Finally, we analyze the intercept level of the joint possibility drop shadow function and construct the optimal fusion algorithm by combining the characteristics of the distribution of different features to dynamically select the fusion performance index. The experimental results show that the optimal fusion algorithm selected in this study outperforms other algorithms in terms of subjective and objective analyses, which verifies the effectiveness and rationality of applying the joint likelihood drop shadow to the selection of an optimal fusion algorithm for bimodal infrared images.
  • [1]
    段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003

    DUAN Jin, FU Qiang, MO Chunhe, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
    [2]
    韩平丽. 红外辐射偏振特性及目标识别研究[D]. 西安: 西安电子科技大学, 2014.

    HAN Pingli. Study on Polarization Characteristics and Target Recognition of Infrared Radiation [D]. Xi 'an: Xidian University, 2014.
    [3]
    朱攀. 红外与红外偏振/可见光图像融合算法研究[D]. 天津: 天津大学, 2017.

    ZHU Pan. Study on Fusion Algorithm for Infrared and Infrared Polarization/Visible Images[D]. Tianjin: Tianjin University, 2017.
    [4]
    LIN Suzhen, WANG Dongjuan, ZHU Xiaohong, et al. Fusion of infrared intensity and polarization images using embedded multi-scale transform[J]. Optik-International Journal for Light and Electron Optics, 2015, 126: 5127-5133. DOI: 10.1016/j.ijleo.2015.09.154
    [5]
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm

    ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and light intensity image fusion based on dual-tree complex wavelet transform and sparse representation [J]. Acta Photonica Sinica, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm
    [6]
    LIU Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid[J]. Pattern Recognition Letters, 2001, 22(9): 929-939. DOI: 10.1016/S0167-8655(01)00047-2
    [7]
    Vanmali A V, Gadre V M. Visible and NIR image fusion using weight-map-guided Laplacian-Gaussian pyramid for improving scene visibility[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2017, 42(7): 1063-1082.
    [8]
    LIU Gang, JING Zhongliang, SUN Shaoyuan, et al. Image fusion based on expectation maximization algorithm and steerable pyramid[J]. Chinese Optics Letters, 2004(7): 386-389.
    [9]
    徐磊, 田淑昌, 崔灿, 等. 基于改进离散小波变换的多模态医学图像融合方法[J]. 中国医疗设备, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm

    XU Lei, TIAN Shuchang, CUI Can, et al. Multimodal medical image fusion method based on improved discrete wavelet transform[J]. China Medical Equipment, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm
    [10]
    HAN Xiao, ZHANG Lili, YAO Li, et al. Fusion of infrared and visible images based on discrete wavelet transform[C]//Proceedings of the Second Symposium on New Detection Technology and Its Application, National Defense Optoelectronics Forum, 2015: 38.
    [11]
    YAN X, QIN H, LI J, et al. Infrared and visible image fusion with spectral graph wavelet transform[J]. JOSAA, 2015, 32(9): 1643-1652. DOI: 10.1364/JOSAA.32.001643
    [12]
    ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers (Taiwan), 2017, 28(2): 57-71.
    [13]
    MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [14]
    杨风暴, 吉琳娜. 双模态红外图像差异特征多属性与融合算法间的深度集值映射研究[J]. 指挥控制与仿真, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm

    YANG Fengbao, JI Linna. Research on depth set value mapping between multi-attribute and fusion algorithm of dual-mode infrared image difference feature [J]. Command Control and Simulation, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm
    [15]
    张雷, 杨风暴, 吉琳娜. 差异特征指数测度的红外偏振与光强图像多算法融合[J]. 火力与指挥控制, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm

    ZHANG Lei, YANG Fengbao, JI Linna. Multi-algorithm fusion of infrared polarization and light intensity images based on differential feature index measure [J]. Fire Control & Command Control, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm
    [16]
    杨风暴, 吉琳娜, 王肖霞. 可能性理论及应用[M]. 北京: 科学出版社, 2019.

    YANG Fengbao, JI Linna, WANG Xiaoxia. Possibility Theory and Application [M]. Beijing: Science Press, 2019.
    [17]
    LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116.
    [18]
    Toet A, Hogervorst M A. Multiscale image fusion through guided filtering[C]//Proceedings of SPIE, 2016: 99970J.
    [19]
    SONG Y, XIAO J, YANG J, et al. Research on MR-SVD based visual and infrared image fusion[C]//Proceedings of the International Symposium on Optoelectronic Technology and Application, 2016: 101571.
    [20]
    ZHANG W J, KANG J Y. QuickBird panchromatic and multi-spectral image fusion using wavelet packet transform[C]//International Conference on Intelligent Computing (ICIC), 2006, 344: 976-981.
    [21]
    Roberts J W, Van Aardt J, Ahmed F. Assessment of image fusion procedures using entropy image quality and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
    [22]
    Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Trans. Commun., 1995, 43(12): 2959-2965.
    [23]
    CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209.
    [24]
    Ratliff B M, LeMaster D A. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data[C]//Polarization: Measurement, Analysis, and Remote Sensing X, 2012, 8364: 83640N.
    [25]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [26]
    QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
    [27]
    ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process, 2004, 13(4): 600-612.
  • Related Articles

    [1]XU Guangxian, ZHOU Weijie, MA Fei. Fusion of Hyperspectral and Multispectral Images Using a CNN Joint Multi-Scale Transformer[J]. Infrared Technology , 2025, 47(1): 52-62.
    [2]YANG Yanchun, LEI Huiyun, YANG Wanxuan. Infrared and Visible Image Fusion Based on Fast Joint Bilateral Filtering and Improved PCNN[J]. Infrared Technology , 2024, 46(8): 892-901.
    [3]WANG Xueshuang, WANG Xiaoxia, JI Linna, GUO Xiaoming. Mimic Fusion Method for Differences in Dual-Mode Infrared Images[J]. Infrared Technology , 2024, 46(2): 190-198.
    [4]CHEN Sijing, FU Zhitao, LI Ziqian, NIE Han, SONG Jiawen. A Visible and Infrared Image Fusion Algorithm Based on Adaptive Enhancement and Saliency Detection[J]. Infrared Technology , 2023, 45(9): 907-914.
    [5]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.
    [6]CHEN Jing, SUN Yujuan, ZHOU Wanjun. An Improved Kernelized Correlation Tracking Algorithm Based on a Joint Confidence Measurement and Motion Model[J]. Infrared Technology , 2018, 40(11): 1106-1111.
    [7]JIANG Guoqing, WANG Shixu, WANG Laijun, HAN Qiang, FAN Xiaoqing, CAI Yinping. Image Fusion with Joint Sparse and Guided Image Filtering for Infrared and Visible Images of Insulator[J]. Infrared Technology , 2017, 39(6): 523-528.
    [8]JIN Guang-zhi, SHI Lin-suo, ZHENG Feng-shou, BAI Xiang-feng, LI Jian-yi. Moving Objects Detecting and Tracking for Fighting Shadow and Occlusion[J]. Infrared Technology , 2011, 33(8): 483-488. DOI: 10.3969/j.issn.1001-8891.2011.08.012
    [9]HU Mao-hai, FU Jian-hui, TAO Chun-kan. The System Design of Real-time Joint Transform Correlator Based on DSP[J]. Infrared Technology , 2009, 31(4): 196-198. DOI: 10.3969/j.issn.1001-8891.2009.04.003
    [10]Selection of Working Wavelengths of Dual-Wavelength Temperature Measurement in Drop Tubes[J]. Infrared Technology , 2004, 26(6): 38-40. DOI: 10.3969/j.issn.1001-8891.2004.06.010
  • Cited by

    Periodical cited type(19)

    1. 刘文斌,庹先国,张贵宇,罗琪,彭英杰. 基于卷积神经网络的白酒上甑探汽方法. 食品研究与开发. 2024(05): 139-144 .
    2. 孙胜华,何建强,陈伟锡,任哲,霍楚. 基于机器视觉的电源适配器外观质量检测装置设计与实现. 电子制作. 2024(09): 71-73+57 .
    3. 冯娟,刘永立. 压缩传感图像边缘自适应增强方法研究. 传感技术学报. 2024(05): 877-882 .
    4. 黄靖,林杨,林朝晖,陈斌艺. 改进Deeplab V3+在复合绝缘子红外热像分割中的应用. 电瓷避雷器. 2024(03): 157-166 .
    5. 冉庆鹏,付明春,李琼琳. 基于模糊数学的光学图像边缘自适应检测研究. 激光杂志. 2024(10): 147-151 .
    6. 蔡靖,王锴,李岳,戴轩. Canny算子+模糊C聚类融合的红外热成像机场道面积水识别方法. 科学技术与工程. 2024(28): 12382-12390 .
    7. 唐守锋,翟少奇,仝光明,钟鹏飞,史经灿,史凡. 改进Canny算子与形态学融合的边缘检测. 计算机工程与设计. 2023(01): 224-231 .
    8. 全燕南,吴松华,谭杰,赵建辉,苑雪山. 沉管隧道渗漏水红外自主检测技术. 激光与红外. 2023(02): 237-245 .
    9. 周红纲,郭莉,时鹏飞. 一种空间信息自适应的鲁棒模糊聚类算法. 青岛大学学报(工程技术版). 2023(01): 1-15 .
    10. 王小丽. 基于Vivado HLS雾天图像预处理IP核设计. 电脑编程技巧与维护. 2023(04): 158-161 .
    11. 孙思宇,丁红昌,曹国华. 基于轮廓匹配的夜晚环境下猫眼目标识别方法. 强激光与粒子束. 2023(06): 163-170 .
    12. 李凯臣,李俊芳,于晓,许晓刚,姜艳艳. 基于结构重建距离分水岭的细胞图像目标提取. 天津理工大学学报. 2023(04): 39-45 .
    13. 王俊霖,温兴平,罗大游,徐俊龙. 基于遥感影像和Canny算子的异龙湖形态特征变化. 兰州大学学报(自然科学版). 2023(03): 364-370 .
    14. 陈钰,郭立强. 基于SWT和边缘检测的红外与可见光图像融合算法. 淮阴师范学院学报(自然科学版). 2023(03): 202-209 .
    15. 彭双平. 图像边缘检测算法的Simulink实现及改进. 舰船电子工程. 2023(09): 121-125+165 .
    16. 李雪梅,钟坚. 加权核范数的边缘检测在最小化图像去噪中的应用. 自动化与仪器仪表. 2022(04): 16-20 .
    17. 王东升,王海龙,张芳,韩林芳,赵怡琳. 基于时序信息的红外图像缺陷信息提取. 红外技术. 2022(06): 565-570 . 本站查看
    18. 韦德鹏,陈继清,罗天,张宏都,龙腾. 基于改进八方向Sobel算子的图像轮廓提取方法. 现代电子技术. 2022(19): 54-58 .
    19. 孙炜玮,孙艳丽,刘治江. 一种复杂海天背景下红外图像舰船目标检测方法. 舰船电子工程. 2022(10): 36-39+55 .

    Other cited types(34)

Catalog

    Article views (136) PDF downloads (36) Cited by(53)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return