WANG Xueshuang, WANG Xiaoxia, JI Linna, GUO Xiaoming. Mimic Fusion Method for Differences in Dual-Mode Infrared Images[J]. Infrared Technology , 2024, 46(2): 190-198.
Citation: WANG Xueshuang, WANG Xiaoxia, JI Linna, GUO Xiaoming. Mimic Fusion Method for Differences in Dual-Mode Infrared Images[J]. Infrared Technology , 2024, 46(2): 190-198.

Mimic Fusion Method for Differences in Dual-Mode Infrared Images

More Information
  • Received Date: June 01, 2023
  • Revised Date: July 05, 2023
  • Traditional fusion methods cannot select an effective fusion strategy based on the different characteristics of dual-mode infrared images. A mimic fusion method for the difference between the infrared intensity and polarization images was developed in this study. First, the degree of difference between image features was calculated to roughly screen the difference features, and the selection rules of the main difference feature types were formulated to determine the main difference features of the image groups. Next, the degree of feature fusion was constructed to establish the mapping between the difference features and variables in each layer of the mimic variable set and to determine the hierarchical structure of the variables. Finally, in the hierarchical structure of the variables, the variables of each layer of the main difference feature type were selected. The degrees of feature fusion of the difference features between combined variables of different mimic structures were compared to determine the mimic structure with the highest proportion of its maximum value and form a variant. The experimental results show that the visual effect of the proposed method was better than that of the comparison method after a subjective analysis. After objective evaluation, the results obtained using the proposed method indicate effective fusion. Therefore, this method realizes adaptive selection of the fusion strategy and improves image fusion quality.
  • [1]
    CHEN C S, DAI M Y, LIU H F, et al. Comparison and analysis on test methods of infrared radiant intensity of infrared decoy[J]. Infrared Technology and Applications, 2014, 9300: 93000K.
    [2]
    LI P, KANG G G. Vartiainen I. Investigation of achromatic micro polarizer array for polarization imaging in visible-infrared band[J]. Optik, 2018, 158: 1427-1435. DOI: 10.1016/j.ijleo.2018.01.017
    [3]
    Kumar P, Gaurav A, Rajnish R K, et al. Applications of thermal imaging with infrared thermography in orthopaedics[J]. Journal of Clinical Orthopaedics and Trauma, 2021, 24: 101722.
    [4]
    TUO H N, SHI G C, LUO X L. Detection method of ship target infrared polarization image[J]. Journal of Physics: Conference Series, 2021, 1802: 022063002E
    [5]
    ZHANG J H, ZHANG Y, SHI Z G. Long-wave infrared polarization feature extraction and image fusion based on the orthogonality difference method[J]. Journal of Electronic Imaging, 2018, 27(2): 023021.
    [6]
    MAJ Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [7]
    LI S T, KANG X D, HU J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. DOI: 10.1109/TIP.2013.2244222
    [8]
    LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24(C): 147-164.
    [9]
    LIU Y, CHEN X, CHENG J, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets Multiresolution and Information Processing, 2018, 16(3): 1850018. DOI: 10.1142/S0219691318500182
    [10]
    HU P, YANG F B, WEI H, et al. Research on constructing difference-features to guide the fusion of dual-modal infrared images[J]. Infrared Physics & Technology, 2019, 102: 102994.
    [11]
    杨风暴. 红外物理与技术[M]. 2版: 北京: 电子工业出版社, 2020.

    YANG Fengbao. Infrared Physics and Technology[M]. 2nd edition: Beijing: Publishing House of Electronics Industry, 2020.
    [12]
    BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. DOI: 10.1109/TCOM.1983.1095851
    [13]
    Toet A, Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253. DOI: 10.1016/0167-8655(89)90003-2
    [14]
    Kannan1 K, Arumuga Perumal S, Arulmozhi K. Area level fusion of multi-focused images using double density DWT and DTCWT[J]. Digital Image Processing, 2009, 1(6): 231-242.
    [15]
    王少杰, 潘晋孝, 陈平. 基于双树复小波变换的图像融合[J]. 核电子学与探测技术, 2015, 7: 726-728. DOI: 10.3969/j.issn.0258-0934.2015.07.018

    WANG S J, PAN J X, CHEN P. Image fusion based on dual-tree complex wavelet transform[J]. Nuclear Electronics and Detection Technology, 2015, 7: 726-728. DOI: 10.3969/j.issn.0258-0934.2015.07.018
    [16]
    Easley G, Labate D, Lim W. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. DOI: 10.1016/j.acha.2007.09.003
    [17]
    GU B, LI W, ZHU M, et al. Local edge-preserving multiscale decomposition for high dynamic range image tone mapping[J]. IEEE Transactions on Image Processing, 2013, 22(1): 70-79. DOI: 10.1109/TIP.2012.2214047
  • Related Articles

    [1]FENG Fan, XIN Daxin, HUA Jin, LIU Peng. High-temperature Furnace Slag Positioning Method for Slag Discharging Manipulator Based on Near-infrared Vision[J]. Infrared Technology , 2019, 41(2): 194-201.
    [2]LI Hui, XU Shihai, GAO Fei, XU Yongkuan. Study of Surface Roughness of CdS in CMP[J]. Infrared Technology , 2018, 40(10): 931-935.
    [3]WANG Jingyu, SONG Linwei, KONG Jincheng, WU Jun, HONG Yan, ZHANG Yang, LI Dongsheng. Study of Chemo-mechanical Polishing Process of Long-wave HgCdTe Film Grown by LPE[J]. Infrared Technology , 2018, 40(10): 925-930.
    [4]GUO Sheng, XIN Sishu, GONG Xiaoxia, YUAN Jun, GUO Jie. Research on Surface Polishing and Corrosion of InSb Chip[J]. Infrared Technology , 2018, 40(2): 133-138.
    [5]AO Menghan, ZHU Lihui, SUN Shiwen. Research on Chemical-mechanical Polishing Slurry for CdZnTe Crystal[J]. Infrared Technology , 2017, 39(1): 22-26.
    [6]ZHANG Yang, HUANG Yong-gang, LIU Hui, WANG Yun, LYU Xue-liang. Material Removal Property in Double-sided Polishing Process for Microchannel Plates[J]. Infrared Technology , 2014, (4): 336-342.
    [7]XIANG Jun-rong, LI Ming-hua, ZHANG Lei. Research of Polishing Technology for InSb Semiconductor Materials[J]. Infrared Technology , 2009, 31(11): 625-627. DOI: 10.3969/j.issn.1001-8891.2009.11.002
    [8]ZHANG Mei, HUANG Hui. The Analyses of Cadmium Zinc Telluride Wafers by Mechanical Chemical Polishing[J]. Infrared Technology , 2008, 30(2): 111-113. DOI: 10.3969/j.issn.1001-8891.2008.02.013
    [9]ZHANG Yi, BAI Lian-fa, CHEN Qian, GU guo-hua, ZHANG Bao-min. Non-Mechanical Micro-scan Technology Based on Infrared TFT-LCD[J]. Infrared Technology , 2007, 29(9): 518-523. DOI: 10.3969/j.issn.1001-8891.2007.09.007
    [10]A Mechanical Design of Optical-Near Infrared Camera CASCAM[J]. Infrared Technology , 2004, 26(4): 20-24,30. DOI: 10.3969/j.issn.1001-8891.2004.04.005
  • Cited by

    Periodical cited type(2)

    1. 赵超,孔忠弟,董涛,吴卿,折伟林,王小龙,徐鹏艳,李乾,李达,李聪聪. 5英寸锑化铟晶片加工及表征. 人工晶体学报. 2022(12): 2014-2021 .
    2. 孔忠弟,赵超,董涛. 锑化铟抛光片表面粗糙度优化研究. 红外. 2022(12): 20-25 .

    Other cited types(0)

Catalog

    Article views (122) PDF downloads (31) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return