Citation: | WU Lianquan, CHU Xianteng, YANG Haitao, NIU Jinlin, HAN Hong, WANG Huapeng. X-ray Detection of Prohibited Items Based on Improved YOLOX[J]. Infrared Technology , 2023, 45(4): 427-435. |
[1] |
陈冰. 基于多能X射线成像的违禁物品自动识别[D]. 北京: 北京理工大学, 2018.
CHEN B. Automatic Recognition of Prohibited Items Based on Multi-energy X-ray Imaging[D]. Beijing: Beijing Institute of Technology, 2018.
|
[2] |
邰仁忠. X射线物理学[J]. 物理, 2021, 50(8): 501-511. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ202108003.htm
TAI R Z. X-ray physics[J]. Physics, 2021, 50(8): 501-511. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ202108003.htm
|
[3] |
McCarley J S, Kramer A F, Wickens C D, et al. Visual skills in airport-security screening[J]. Psychological Science, 2004, 15(5): 302-306. DOI: 10.1111/j.0956-7976.2004.00673.x
|
[4] |
梁添汾, 张南峰, 张艳喜, 等. 违禁品X光图像检测技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(16): 74-82. DOI: 10.3778/j.issn.1002-8331.2103-0476
LIANG T F, ZHANG N F, ZHANG Y X, et al. Summary of research progress on application of prohibited item detection in X-ray images[J]. Computer Engineering and Applications, 2021, 57(16): 74-82. DOI: 10.3778/j.issn.1002-8331.2103-0476
|
[5] |
Mery D, Mondragon G, Riffo V, et al. Detection of regular objects in baggage using multiple X-ray views[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(1): 16-20. DOI: 10.1784/insi.2012.55.1.16
|
[6] |
Michel S, Mendes M, de Ruiter J C, et al. Increasing X-ray image interpretation competency of cargo security screeners[J]. International Journal of Industrial Ergonomics, 2014, 44(4): 551-560. DOI: 10.1016/j.ergon.2014.03.007
|
[7] |
韩萍, 刘则徐, 何炜琨. 一种有效的机场安检X光手提行李图像两级增强方法[J]. 光电工程, 2011, 38(7): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201107023.htm
HAN P, LIU Z X, HE W K, An efficient two-stage enhancement algorithm of X-ray carry-on luggage images[J]. Opto-Electronic Engineering, 2011, 38(7): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201107023.htm
|
[8] |
Khan S U, Chai W Y, See C S, et al. X-ray image enhancement using a boundary division wiener filter and wavelet-based image fusion approach[J]. Journal of Information Processing Systems, 2016, 12(1): 35-45.
|
[9] |
ZHAO B, Wolter S, Greenberg J A. Application of machine learning to x-ray diffraction-based classification[C]//Anomaly Detection and Imaging with X-Rays(ADIX) Ⅲ. International Society for Optics and Photonics, 2018, 10632: 1063205.
|
[10] |
Gaus Y F A, Bhowmik N, Breckon T P. On the use of deep learning for the detection of firearms in x-ray baggage security imagery[C]//2019 IEEE International Symposium on Technologies for Homeland Security (HST), 2019: 1-7.
|
[11] |
Franzel T, Schmidt U, Roth S. Object detection in multi-view X-ray images[C]//Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium, 2012: 144-154.
|
[12] |
王宇, 邹文辉, 杨晓敏, 等. 基于计算机视觉的X射线图像异物分类研究[J]. 液晶与显示, 2017, 32(4): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201704008.htm
WANG Y, ZOU W H, YANG X M, et al. X-ray image illegal object classification based on computer vision[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(4): 287-293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201704008.htm
|
[13] |
Alom M Z, Taha T M, Yakopcic C, et al. The history began from alexnet: a comprehensive survey on deep learning approaches[J/OL]. arXiv preprint arXiv: 1803.01164, 2018.
|
[14] |
WANG L, GUO S, HUANG W, et al. Places205-vggnet models for scene recognition[J/OL]. arXiv preprint arXiv: 1508.01667, 2015.
|
[15] |
Ballester P, Araujo R M. On the performance of GoogLeNet and AlexNet applied to sketches[C]//Thirtieth AAAI Conference on Artificial Intelligence, 2016, 30(1): doi: https://doi.org/10.1609/aaai.v30i1.10171.
|
[16] |
Haque M F, Lim H Y, Kang D S. Object detection based on VGG with ResNet network[C]//2019 International Conference on Electronics, Information, and Communication (ICEIC) of IEEE, 2019: 1-3(doi: 10.23919/ELINFOCOM.2019.8706476).
|
[17] |
ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: a survey[J/OL]. arXiv preprint arXiv: 1905.05055, 2019.
|
[18] |
CHEN C, LIU M Y, Tuzel O, et al. R-CNN for small object detection[C]//Asian Conference on Computer Vision, 2016: 214-230.
|
[19] |
Girshick R. Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
[20] |
R Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|
[21] |
ZHANG Y, KONG W, LI D, et al. On using XMC R-CNN model for contraband detection within X-ray baggage security images[J]. Mathematical Problems in Engineering, 2020, 2020: 1-14.
|
[22] |
Sigman J B, Spell G P, LIANG K J, et al. Background adaptive faster R-CNN for semi-supervised convolutional object detection of threats in x-ray images[C]//Anomaly Detection and Imaging with X-Rays (ADIX) V, 2020, 11404: 1140404.
|
[23] |
Papageorgiou C P, Oren M, Poggio T. A general framework for object detection[C]//Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271) of IEEE, 1998: 555-562.
|
[24] |
LIU Z, LI J, SHU Y, et al. Detection and recognition of security detection object based on YOLO9000[C]//2018 5th International Conference on Systems and Informatics (ICSAI)of IEEE, 2018: 278-282.
|
[25] |
Galvez R L, Dadios E P, Bandala A A, et al. YOLO-based Threat Object Detection in X-ray Images[C]//2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 2019: 1-5.
|
[26] |
郭守向, 张良. Yolo-C: 基于单阶段网络的X光图像违禁品检测[J]. 激光与光电子学进展, 2021, 58(8): 0810003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202108007.htm
GUO S X, ZHANG L. Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810003. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202108007.htm
|
[27] |
穆思奇, 林进健, 汪海泉, 等. 基于改进YOLOv4的X射线图像违禁品检测算法[J]. 兵工学报, 2021, 42(12): 2675-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202112015.htm
MU S Q, LIN J J, WANG H Q, et al. An algorithm for detection of prohibited items in X-ray images based on improved YOLOv4[J]. Acta Armamentarii, 2021, 42(12): 2675-2683. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202112015.htm
|
[28] |
董乙杉, 李兆鑫, 郭靖圆, 等. 一种改进YOLOv5的X光违禁品检测模型[J/OL]. 激光与光电子学进展, [2022-02-21]. http://kns.cnki.net/kcms/detail/31.1690.TN.20220217.1141.008.html.
DONG Y S, LI Z X, GU J Y, et al. An improved YOLOv5 model for X-ray prohibited items detection[J]. Laser & Optoelectronics Progress: [2022-02-21]. http://kns.cnki.net/kcms/detail/31.1690.TN.20220217.1141.008.html.
|
[29] |
GE Z, LIU S, WANG F, et al. YOLOX: Exceeding Yolo series in 2021[J/OL]. arXiv preprint arXiv: 2107.08430, 2021.
|
[30] |
WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
|
[31] |
Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|
[32] |
MIAO C, XIE L, WAN F, et al. SiXray: a large-scale security inspection x-ray benchmark for prohibited item discovery in overlapping images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2119-2128.
|
[1] | LI Wen, YE Kuntao, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Algorithm Based on Gaussian Fuzzy Logic and Adaptive Dual-Channel Spiking Cortical Model[J]. Infrared Technology , 2022, 44(7): 693-701. |
[2] | YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20. |
[3] | QIAN Wei, CHANG Xia, HU Ling. Infrared and Visible Image Pseudo Color Fusion Algorithm Based on Improved Color Transfer Strategy and NSCT[J]. Infrared Technology , 2019, 41(6): 555-560. |
[4] | ZHAO Jingchao, LIN Suzhen, LI Dawei, WANG Lifang, YANG Xiaoli. A Comparative Study of Intuitionistic Fuzzy Sets in Multi-band Image Fusion[J]. Infrared Technology , 2018, 40(9): 881-886. |
[5] | YANG Guang, ZHANG Xiaohan, ZHANG Jianfeng, HUANG Junhua. A Fusion Method for Hyperspectral Imagery Based on Area Feature Detection Using NSCT[J]. Infrared Technology , 2017, 39(6): 505-511. |
[6] | YANG Fengbao, DONG Anran, ZHANG Lei, JI Linna. Infrared Polarization Image Fusion Using the Synergistic Combination of DWT, NSCT and Improved PCA[J]. Infrared Technology , 2017, 39(3): 201-208. |
[7] | YUAN Jin-lou, WU Jin, LIU Jin. Image Fusion Based on Compressed Sensing of NSCT and DWT[J]. Infrared Technology , 2015, 37(11): 957-961. |
[8] | AN Fu, YANG Feng-bao, NIU Tao. A Fusion Model of Infrared Polarization Images Based on Fuzzy Logic and Feature Difference Driving[J]. Infrared Technology , 2014, (4): 304-310. |
[10] | Study on Algorithm of Infrared Image Enhancement Based on Fuzzy Theory[J]. Infrared Technology , 2003, 25(2): 13-14. DOI: 10.3969/j.issn.1001-8891.2003.02.004 |
1. |
肖文健,王彦斌,蒋成龙,周旋风,张德锋. 复杂场景下红外探测系统性能分析与建模. 红外技术. 2025(01): 29-35+43 .
![]() |