YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20.
Citation: YANG Sunyun, XI Zhenghao, WANG Handong, LUO Xiao, KAN Xiu. Image Fusion Based on NSCT and Minimum-Local Mean Gradient[J]. Infrared Technology , 2021, 43(1): 13-20.

Image Fusion Based on NSCT and Minimum-Local Mean Gradient

More Information
  • Received Date: April 01, 2020
  • Revised Date: January 04, 2021
  • To address the problems of low contrast, detail loss, and target blur in the fusion of traditional infrared and visible images, this study uses the idea of non-subsampled contourlet transform (NSCT) to improve the weight function and fusion rules and thus develops a new fusion algorithm to realize the effective fusion of infrared and visible images. First, NSCT is used to decompose infrared and visible images at multiple scales to obtain the corresponding low-and high-frequency coefficients. Then, the improved minimization and local mean gradient rules are used to fuse the low- and high-frequency coefficients, respectively, and thus to obtain the corresponding optimal fusion coefficient. The obtained fusion coefficient is then converted via an NSCT inverse transformation to obtain the final fused image. Finally, a public dataset is used to compare the proposed algorithm with the other five algorithms. The effectiveness and robustness of the proposed algorithm are verified under the constraints of seven performance evaluation indices having practical significance.
  • [1]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    HUANG Z, CHEN L, ZHANG Y, et al. Robust contact-point detection from pantograph-catenary infrared images by employing horizontal- vertical enhancement operator[J]. Infrared Physics & Technology, 2019, 101: 146-155.
    [3]
    HUANG Z, FANG H, LI Q, et al. Optical remote sensing image enhancement with weak structure preservation via spatially adaptive gamma correction[J]. Infrared Physics & Technology, 2018, 94: 38-47.
    [4]
    肖中杰.基于NSCT红外与可见光图像融合算法优化研究[J].红外技术, 2017, 39(12): 1127-1130. http://hwjs.nvir.cn/article/id/hwjs201712010

    XIAO Zhongjie. Optimization of Infrared and Visible Image Fusion Algorithm based on NSCT[J]. Infrared Technology, 2017, 39(12): 1127-1130. http://hwjs.nvir.cn/article/id/hwjs201712010
    [5]
    ZHANG B, LU X, PEI H, et al. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled Shearlet transform[J]. Infrared Physics & Technology, 2015, 73: 286-297.
    [6]
    ZHOU Z, WANG B, LI S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15-26. DOI: 10.1016/j.inffus.2015.11.003
    [7]
    MA J, YU W, LIANG P, et al. Fusion GAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. DOI: 10.1016/j.inffus.2018.09.004
    [8]
    ZHANG Y, ZHANG L, BAI X, et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 2017, 83: 227-237.
    [9]
    肖进胜, 饶天宇, 贾茜, 等.基于图切割的拉普拉斯金字塔图像融合算法[J].光电子·激光, 2014, 25(7): 1416-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201407032.htm

    XIAO Jinsheng, RAO Tianyu, JIA Qian, et al. Image fusion algorithm of Laplacian Pyramid based on graph Cutting[J]. Photoelectron Laser, 2014, 25(7): 1416-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201407032.htm
    [10]
    刘斌, 付忠旺.基于四通道不可分提升小波的多聚焦图像融合[J].系统工程与电子技术, 2018, 40(2): 463-471. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201802032.htm

    LIU Bin, FU Zhongwang. Multi-focus image fusion based on four-channel Indivisible Lifting Wavelet[J]. Systems Engineering and Electronics technology, 2018, 40(2): 463-471. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201802032.htm
    [11]
    薛琴, 范勇, 李绘卓, 等.基于广义邻域结构相似度的红外和彩色可见光图像融合[J].四川大学学报:自然科学版, 2012, 49(3): 570-576. DOI: 10.3969/j.issn.0490-6756.2012.03.017

    XUE Qin, FAN Yong, LI Huizhong, et al. Infrared and color visible light image fusion based on generalized neighborhood structure similarity[J]. Journal of Sichuan University: Natural Science, 2012, 49(3): 570-576. DOI: 10.3969/j.issn.0490-6756.2012.03.017
    [12]
    DA Cunha A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. DOI: 10.1109/TIP.2006.877507
    [13]
    ZHU Z, YIN H, CHAI Y, et al. A novel multi-modality image fusion method based on image decomposition and sparse representation[J]. Information Sciences, 2018, 432: 516-529. DOI: 10.1016/j.ins.2017.09.010
    [14]
    甄媚, 王书朋.可见光与红外图像自适应加权平均融合方法[J].红外技术, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008

    ZHEN Mei, WANG Shupeng. Adaptive Weighted average fusion method for Visible light and infrared Images[J]. Infrared Technology, 2019, 41(4): 341-346. http://hwjs.nvir.cn/article/id/hwjs201904008
    [15]
    XIA Z, PENG X, FENG X, et al. Scarce face recognition via two-layer collaborative representation[J]. IET Biometrics, 2017, 7(1): 56-62.
    [16]
    张新曼, 韩九强.基于视觉特性的多尺度对比度塔图像融合及性能评价[J].西安交通大学学报, 2004(4): 380-383. DOI: 10.3321/j.issn:0253-987X.2004.04.013

    ZHANG Xinman, HAN Jiuqiang. Image fusion and Performance Evaluation of Multi-scale Contrast tower based on visual Characteristics[J]. Journal of Xi 'an Jiaotong University, 2004(4): 380-383. DOI: 10.3321/j.issn:0253-987X.2004.04.013
    [17]
    徐丹萍, 王海梅.基于双边滤波和NSST的红外与可见光图像融合[J].计算机测量与控制, 2018, 26(4): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201804053.htm

    XU Danping, WANG Haimei. Infrared and visible image fusion based on bilateral Filtering and NSST[J]. Computer Measurement and Control, 2018, 26(4): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201804053.htm
    [18]
    李晖晖, 郭雷, 刘坤.基于曲波变换的遥感图像融合研究[J].光电子·激光, 2008(3): 400-403, 411. DOI: 10.3321/j.issn:1005-0086.2008.03.029

    LI Huihui, GUO Lei, LIU Kun. Research on Remote sensing Image Fusion based on Qu Wave Transform[J]. Optoelectronics.Laser, 2008(3): 400-403, 411. DOI: 10.3321/j.issn:1005-0086.2008.03.029
    [19]
    王亚杰, 李殿起, 徐心和.基于双树复小波变换彩色多聚焦图像融合方法[J].计算机工程与应用, 2007(28): 12-14, 40. DOI: 10.3321/j.issn:1002-8331.2007.28.005

    WANG Yajie, LI Dianqi, XU Xinhe. Color Multi-focus image fusion method based on Double tree Complex Wavelet Transform[J]. Computer Engineering and Applications, 2007(28): 12-14, 40. DOI: 10.3321/j.issn:1002-8331.2007.28.005
    [20]
    JIN X, JIANG Q, YAO S, et al. A survey of infrared and visual image fusion methods[J]. Infrared Physics & Technology, 2017, 85: 478-501.
    [21]
    王跃华, 陶忠祥.红外与可见光图像融合质量评价方法综述[J].红外, 2012, 33(6): 7-11. DOI: 10.3969/j.issn.1672-8785.2012.06.002

    WANG Yuehua, TAO Zhongxiang. Review of evaluation methods of infrared and visible image fusion quality[J]. Infrared, 2012, 33(6): 7-11. DOI: 10.3969/j.issn.1672-8785.2012.06.002
    [22]
    QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics letters, 2002, 38(7): 313-315. DOI: 10.1049/el:20020212
    [23]
    HAN Y, CAI Y, CAO Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135. DOI: 10.1016/j.inffus.2011.08.002
    [24]
    薄瑞峰, 苗鸿宾.目标达成度评价法在机械设计课程考核中的应用[J].机械设计, 2018, 35(S2): 236-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ2018S2078.htm

    BO Ruifeng, MIAO Hongbin. Application of objective Achievement Evaluation method in mechanical Design Course Assessment[J]. Mechanical Design, 2018, 35(S2): 236-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ2018S2078.htm
  • Related Articles

    [1]MOU Xingang, ZHU Tailong, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Lightweight Multiscale Downsampling Network[J]. Infrared Technology , 2024, 46(5): 501-509.
    [2]MOU Xingang, CUI Jian, ZHOU Xiao. Infrared Image Non-uniformity Correction Algorithm Based on Full Convolutional Network[J]. Infrared Technology , 2022, 44(1): 21-27.
    [3]HUANG Yu, ZHANG Baohui, WU Jie, CHEN Yingyan, JI Li, WU Xudong, YU Shikong. Adaptive Multipoint Calibration Non-uniformity Correction Algorithm[J]. Infrared Technology , 2020, 42(7): 637-643.
    [4]ZHANG Fuwang, YUAN Huijuan. Image Mixed Noise Removal Based on Deep Residual Network[J]. Infrared Technology , 2019, 41(7): 628-633.
    [5]ZHANG Long, DONG Feng, FU Yutian. Non-uniformity Correction for Infrared Image Using Neural Networks[J]. Infrared Technology , 2018, 40(2): 164-169.
    [6]TAN Dong-jie, ZHANG An. Non-uniformity Correction Based on Local Histogram Specification[J]. Infrared Technology , 2013, (6): 325-328.
    [7]Improved Algorithm of Neural Network Used in IR Image Non-uniformity Correction[J]. Infrared Technology , 2013, (4): 232-237.
    [8]HAN Kai-Liang, HE Chun-Fang. A Nonuniformity Correction Algorithm for IRFPAs Based on Two Points and It's Realization by DSP[J]. Infrared Technology , 2007, 29(9): 541-544. DOI: 10.3969/j.issn.1001-8891.2007.09.012
    [9]LIU Chan-lao, TAN Li-xun, LIU Wei-guo, LI Chun-yan. An Improve High Pass Filtering Algorithm for Nonuniformity Correction of Infrared Image[J]. Infrared Technology , 2006, 28(8): 439-442. DOI: 10.3969/j.issn.1001-8891.2006.08.002
    [10]Study on Non-uniformity Correction of Infrared Image[J]. Infrared Technology , 2002, 24(1): 1-3. DOI: 10.3969/j.issn.1001-8891.2002.01.001
  • Cited by

    Periodical cited type(5)

    1. 毕淳锴,张远辉,付铎. 基于多视角热像图序列的物体表面温度场重建. 计量学报. 2024(07): 997-1006 .
    2. 郑叶龙,李长勇,夏宁宁,李玲一,张国民,赵美蓉. 基于“十字”标志物的红外图像与三维点云融合方法. 天津大学学报(自然科学与工程技术版). 2024(10): 1090-1099 .
    3. 倪成玉,张远辉,朱俊江,付铎. 热像仪下基于几何约束的空间温度场重建. 光电工程. 2024(11): 60-73 .
    4. 齐恩铁,姜春雨,赵立英,孙海峰. 基于红外边界约束的点云目标识别系统. 激光与红外. 2024(12): 1894-1899 .
    5. 王洁,伍弘,詹仲强,李金良,金铭,陈文涛. 基于Lazy Snapping混合模拟退火算法的高压开关柜温度场红外三维图像重建仿真. 红外技术. 2023(03): 276-281 . 本站查看

    Other cited types(2)

Catalog

    Article views (307) PDF downloads (40) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return