KONG Derui, XIA Ming, TANG Tianmin, BI Xiang. Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler[J]. Infrared Technology , 2022, 44(1): 96-102.
Citation: KONG Derui, XIA Ming, TANG Tianmin, BI Xiang. Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler[J]. Infrared Technology , 2022, 44(1): 96-102.

Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler

More Information
  • Received Date: September 05, 2021
  • Revised Date: October 06, 2021
  • At present, research on the vibration system of the vibration absorber and the single-piston linear Stirling cryocooler is almost entirely carried out on the positive definite model of a certain fixed installation method for the known cryocooler system. Owing to the lack of analysis of the system's natural frequency using this method, resonance may occur, and the damping effect of the vibration absorber may be reduced when the installation method is changed. Therefore, this study conducts a theoretical analysis of the positive semi-definite model of the cryocooler and the vibration system of the vibration absorber without any installation and performs vibration experiments before and after the cryocooler is fitted with the vibration absorber through the suspension test method. The theoretical natural frequency value of the system under the positive semi-definite model is 78.6 Hz. Through experiments, it can be found that, due to the actual processing and assembly of the vibration absorber, the natural frequency of the system changes with the vibration absorber's stiffness within the range of 78.1 to 80.8 Hz.
  • [1]
    Epstein R I, Andresen B F, Hehlen M P, et al. Development and optimization progress with RICOR cryocoolers for HOT IR detectors[C]//Proc. Of SPIE, 2016, 9821: 98210N.
    [2]
    Mai M, Ruehlich I, Rosenhagen C, et al. Development of the miniature flexure bearing cryocooler SF070[C]//Proc. of Cryocoolers, Kluwer Academic/Plenum Publishers, 2009: 133-138.
    [3]
    Rühlich I, Mai M, Withopf A, et al. AIM cryocooler developments for HOT detectors[C]//Proc. Of Infrared Technology and Applications XL, 2014, 9070: 90702P.
    [4]
    Rühlich I, Mai M, Rosenhagen C, et al. Compact high efficiency linear cryocooler in single piston moving magnet design for HOT detectors[C]// Proc. Of SPIE on Defense, Security, and Sensing, 2012, 8353: 83531T.
    [5]
    孔德锐, 夏明, 李海英, 等. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc

    KONG Derui, XIA Ming, LI Haiying, et al. Theoretical analysis and Matlab simulation of dynamic vibration absorber for single-piston linear compressor[J]. Infrared Technology, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc
    [6]
    Veprik A, Vilenchik H, Riabzev S, et al. Novel microminiature linear split Stirling cryogenic cooler for portable infrared imagers[C]//Proc. Of SPIE, 2007, 6542: 65422F.
    [7]
    Veprik A, Zechtzer S, Pundak N. Compact linear split Stirling cryogenic cooler for high temperature infrared imagers[C]//Proc. Of Cryocoolers, 2008, 16: 121-132.
    [8]
    Rosenhagen C, Rühlich I. Compensating oscillation device: US20160153512A1[P]. European Patent WO, 2014: 358-361.
    [9]
    Sunpower. Cryocoolers Overview[EB/OL][2020-12-28]. https://www.sunpowerinc.com/products/stirling-cryocoolers.
    [10]
    Amiram Katz, Victor Segal, Avishai Filis, et al. RICOR's cryocoolers development and optimization for HOT IR detectors[C]//Proc. Of SPIE, 2014, 9070: 90702N.
    [11]
    Avishai Filis, Zvi Bar Haim, Tomer Havatzelet, et al. RICOR's rotary cryocoolers development and optimization for HOT IR detectors [C]//Proc. Of SPIE, 2012, 8353: 83531U.
  • Related Articles

    [1]FENG Fan, XIN Daxin, HUA Jin, LIU Peng. High-temperature Furnace Slag Positioning Method for Slag Discharging Manipulator Based on Near-infrared Vision[J]. Infrared Technology , 2019, 41(2): 194-201.
    [2]LI Hui, XU Shihai, GAO Fei, XU Yongkuan. Study of Surface Roughness of CdS in CMP[J]. Infrared Technology , 2018, 40(10): 931-935.
    [3]WANG Jingyu, SONG Linwei, KONG Jincheng, WU Jun, HONG Yan, ZHANG Yang, LI Dongsheng. Study of Chemo-mechanical Polishing Process of Long-wave HgCdTe Film Grown by LPE[J]. Infrared Technology , 2018, 40(10): 925-930.
    [4]GUO Sheng, XIN Sishu, GONG Xiaoxia, YUAN Jun, GUO Jie. Research on Surface Polishing and Corrosion of InSb Chip[J]. Infrared Technology , 2018, 40(2): 133-138.
    [5]AO Menghan, ZHU Lihui, SUN Shiwen. Research on Chemical-mechanical Polishing Slurry for CdZnTe Crystal[J]. Infrared Technology , 2017, 39(1): 22-26.
    [6]ZHANG Yang, HUANG Yong-gang, LIU Hui, WANG Yun, LYU Xue-liang. Material Removal Property in Double-sided Polishing Process for Microchannel Plates[J]. Infrared Technology , 2014, (4): 336-342.
    [7]XIANG Jun-rong, LI Ming-hua, ZHANG Lei. Research of Polishing Technology for InSb Semiconductor Materials[J]. Infrared Technology , 2009, 31(11): 625-627. DOI: 10.3969/j.issn.1001-8891.2009.11.002
    [8]ZHANG Mei, HUANG Hui. The Analyses of Cadmium Zinc Telluride Wafers by Mechanical Chemical Polishing[J]. Infrared Technology , 2008, 30(2): 111-113. DOI: 10.3969/j.issn.1001-8891.2008.02.013
    [9]ZHANG Yi, BAI Lian-fa, CHEN Qian, GU guo-hua, ZHANG Bao-min. Non-Mechanical Micro-scan Technology Based on Infrared TFT-LCD[J]. Infrared Technology , 2007, 29(9): 518-523. DOI: 10.3969/j.issn.1001-8891.2007.09.007
    [10]A Mechanical Design of Optical-Near Infrared Camera CASCAM[J]. Infrared Technology , 2004, 26(4): 20-24,30. DOI: 10.3969/j.issn.1001-8891.2004.04.005
  • Cited by

    Periodical cited type(2)

    1. 赵超,孔忠弟,董涛,吴卿,折伟林,王小龙,徐鹏艳,李乾,李达,李聪聪. 5英寸锑化铟晶片加工及表征. 人工晶体学报. 2022(12): 2014-2021 .
    2. 孔忠弟,赵超,董涛. 锑化铟抛光片表面粗糙度优化研究. 红外. 2022(12): 20-25 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return