KONG Derui, XIA Ming, TANG Tianmin, BI Xiang. Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler[J]. Infrared Technology , 2022, 44(1): 96-102.
Citation: KONG Derui, XIA Ming, TANG Tianmin, BI Xiang. Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler[J]. Infrared Technology , 2022, 44(1): 96-102.

Research on Positive Semi-Definite Vibration Damping System of Single-Piston Linear Stirling Cryocooler

More Information
  • Received Date: September 05, 2021
  • Revised Date: October 06, 2021
  • At present, research on the vibration system of the vibration absorber and the single-piston linear Stirling cryocooler is almost entirely carried out on the positive definite model of a certain fixed installation method for the known cryocooler system. Owing to the lack of analysis of the system's natural frequency using this method, resonance may occur, and the damping effect of the vibration absorber may be reduced when the installation method is changed. Therefore, this study conducts a theoretical analysis of the positive semi-definite model of the cryocooler and the vibration system of the vibration absorber without any installation and performs vibration experiments before and after the cryocooler is fitted with the vibration absorber through the suspension test method. The theoretical natural frequency value of the system under the positive semi-definite model is 78.6 Hz. Through experiments, it can be found that, due to the actual processing and assembly of the vibration absorber, the natural frequency of the system changes with the vibration absorber's stiffness within the range of 78.1 to 80.8 Hz.
  • [1]
    Epstein R I, Andresen B F, Hehlen M P, et al. Development and optimization progress with RICOR cryocoolers for HOT IR detectors[C]//Proc. Of SPIE, 2016, 9821: 98210N.
    [2]
    Mai M, Ruehlich I, Rosenhagen C, et al. Development of the miniature flexure bearing cryocooler SF070[C]//Proc. of Cryocoolers, Kluwer Academic/Plenum Publishers, 2009: 133-138.
    [3]
    Rühlich I, Mai M, Withopf A, et al. AIM cryocooler developments for HOT detectors[C]//Proc. Of Infrared Technology and Applications XL, 2014, 9070: 90702P.
    [4]
    Rühlich I, Mai M, Rosenhagen C, et al. Compact high efficiency linear cryocooler in single piston moving magnet design for HOT detectors[C]// Proc. Of SPIE on Defense, Security, and Sensing, 2012, 8353: 83531T.
    [5]
    孔德锐, 夏明, 李海英, 等. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc

    KONG Derui, XIA Ming, LI Haiying, et al. Theoretical analysis and Matlab simulation of dynamic vibration absorber for single-piston linear compressor[J]. Infrared Technology, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc
    [6]
    Veprik A, Vilenchik H, Riabzev S, et al. Novel microminiature linear split Stirling cryogenic cooler for portable infrared imagers[C]//Proc. Of SPIE, 2007, 6542: 65422F.
    [7]
    Veprik A, Zechtzer S, Pundak N. Compact linear split Stirling cryogenic cooler for high temperature infrared imagers[C]//Proc. Of Cryocoolers, 2008, 16: 121-132.
    [8]
    Rosenhagen C, Rühlich I. Compensating oscillation device: US20160153512A1[P]. European Patent WO, 2014: 358-361.
    [9]
    Sunpower. Cryocoolers Overview[EB/OL][2020-12-28]. https://www.sunpowerinc.com/products/stirling-cryocoolers.
    [10]
    Amiram Katz, Victor Segal, Avishai Filis, et al. RICOR's cryocoolers development and optimization for HOT IR detectors[C]//Proc. Of SPIE, 2014, 9070: 90702N.
    [11]
    Avishai Filis, Zvi Bar Haim, Tomer Havatzelet, et al. RICOR's rotary cryocoolers development and optimization for HOT IR detectors [C]//Proc. Of SPIE, 2012, 8353: 83531U.
  • Related Articles

    [1]AI Zhiwei, ZHANG Mufan, ZHU Hua, JI Jianbo, BAI Yuanzhong. Design of Adaptive Inversion Proportional-Integral-Derivative Control System for Fast-Steering Mirror[J]. Infrared Technology , 2024, 46(2): 144-149.
    [2]LI Shuai, YANG Baoyu, LU Yan. Adaptive PID Control Method Based on Space Optical Mechanical Thermal Model[J]. Infrared Technology , 2021, 43(10): 934-939.
    [3]CAI Yusheng, ZHU Jun, SHI Lei, ZHANG Jingzhong. Fuzzy Adaptive PID Control of Large Aperture Fast Steering Mirror[J]. Infrared Technology , 2021, 43(6): 523-531.
    [4]LUO Na, ZHU Jiang, LI Yan. Simulation of DC Motor Control Algorithm Based on Intelligent PID[J]. Infrared Technology , 2020, 42(3): 218-222.
    [5]ZHU Shuangshuang, ZOU Peng, LU Meina, ZHANG Aiwen, LIU Zhenhai, QIU Zhenwei, HONG Jin. Temperature Control System Design of Infrared Detector Based on Bang-Bang and PID Control[J]. Infrared Technology , 2017, 39(11): 990-995.
    [6]YUAN Zhiwei, HUANG Shucai, TANG Yidong, XIONG Zhigang. Infrared Small Target Detection Based on Adaptive SUSAN-controlled Anisotropic Diffusion[J]. Infrared Technology , 2016, 38(10): 850-854.
    [7]HUA Wen-tao, JIA Xiao-hong, DING Hai-shan. Design of Seeker Stabilized Platform Control Parameters Based on Particle Swarm Optimization[J]. Infrared Technology , 2013, (8): 507-511.
    [8]WANG Xiao-dong, YANG Nan-sheng. Study on Fuzzy-PID Servo Controller Design and in Infrared Search and Track System[J]. Infrared Technology , 2007, 29(2): 107-111. DOI: 10.3969/j.issn.1001-8891.2007.02.012
    [9]XIA Li-kun, HOU Yang, LI Yin-zhu, TAI Yun-jian, YAN jun, MO Qi-yuan. PID Control Technology in the Laser Etching System for Ferroelectric Materials[J]. Infrared Technology , 2006, 28(8): 489-492. DOI: 10.3969/j.issn.1001-8891.2006.08.014
    [10]MA Chao-jie, LI Xiao-xia, LIN Zhi-dan, XU Ying, LING Yong-shun. Infrared Features Control Technology Based on Surface Design[J]. Infrared Technology , 2006, 28(3): 157-160. DOI: 10.3969/j.issn.1001-8891.2006.03.009
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return