Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor
-
摘要: 单活塞线性斯特林制冷机由于其降温速度快、质量小和可靠性高等特点,目前正广泛用于红外探测器中,但是由于压缩机运行时产生的振动会严重影响探测器成像质量,所以在振动抑制方面动力吸振器的使用成为单活塞线性压缩机的最佳减振方式。基于此,本文首先论述了动力吸振器在单活塞线性压缩机减振方面的作用,并举例介绍了当前单活塞线性压缩机用动力吸振器的基本结构。为了不失理论分析的一般性,在动力吸振器与压缩机振动模型的理论计算中引入了几个重要的无量纲参数。最后在此基础上,利用Matlab软件对动力吸振器与压缩机模型进行振动幅频特性仿真。Abstract: Single-piston linear Stirling cryocoolers are widely used in infrared detectors owing to their fast cooling, lightweight, and high reliability. However, the vibration generated by the compressor during operation considerably affects the imaging quality of the detector. Therefore, the use of a dynamic vibration absorber has become the best vibration reduction method for single-piston linear compressors. First, this article discusses the role of a dynamic vibration absorber in damping single-piston linear compressors and provides an example of the basic structure of current single-piston linear compressors. Second, to generalize the theoretical analysis, several important dimensionless parameters are introduced in the theoretical calculation of the dynamic vibration absorber and compressor vibration model. Finally, Matlab is used to simulate the vibration amplitude-frequency characteristics of the dynamic vibration absorber and compressor model
-
-
表 1 不同类型斯特林制冷机技术特点[1]
Table 1 Technical characteristics of different types of Stirlingcryocoolers
Parameter Integral rotary Split linear
single pistonSplit linear dual
opposed pistonCooling time √√ √√√ √√√ Weight √√√ √√ √√ Vibration √√√ √ √√ Integration √√√ √ √√ MTTF(Mean time to failure) √√ √√√ √√√ 表 2 K527和SX030压缩机相关参数
Table 2 Related parameters of K527 and SX030 compressors
Manufacturer/Cryocooler Physical dimension/mm Weight/g Input power/W Vibration/N RICOR/K527 63×33.5 200 3.5 11 RICOR/K527+ Vibration Mount 63×33.5 220 3.5 2 RICOR/K527+ Vibration Mount+DVA 93×33.5 300 3.5 0.03 AIM/SX030 61×33 280 3.3 >8 AIM/SX030+ DVA 75×33 380 3.3 <0.17 -
[1] Katz A, Segal V, Filis A, et al. RICOR's Cryocoolers development and optimization for HOT IR detectors[C]//Proc. of SPIE, Defense + Security, International Society for Optics and Photonics, 2012, 8353: 83531U.
[2] 杨宝玉, 吴亦农. 空间机械制冷机的振动控制研究进展[C]//第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集, 2007: 6. YANG Baoyu, WU Yinong. Research progress of vibration control of space mechanical refrigerator[C]//The 8th National Cryogenic Engineering Conference and China Aerospace Cryogenic Professional Information Network 2007 Academic Exchange Conference, 2007: 6.
[3] RühlichI, Mai M, Rosenhagen C, et al. Compact high efficiency linear cryocooler in single piston moving magnet design for HOT detectors[C]//SPIE Defense, Security, and Sensing, 2012, 8353: 83531T.
[4] Veprik A, Zechtzer S, Pundak N. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2010: 7660.
[5] 金涛, 郑水英, 谢洁飞, 等. 直线压缩机的研究现状与发展[J]. 中国机械工程, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm JIN Tao, ZHENG Shuiying, XIE Jiefei. Research status and development of linear compressors[J]. China Mechanical Engineering, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm
[6] 邰晓亮. 动磁式直线电机驱动微小型活塞压缩机理论分析及实验研究[D]. 上海: 上海交通大学, 2009. TAI Xiaoliang. Theoretical analysis and experimental study of a miniature piston compressor driven by a moving magnet linear motor[D]. Shanghai: Shanghai Jiaotong University, 2009.
[7] Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers[C]//Proc. Of SPIE, 2007, 6542: 65422F.
[8] Sergey Riabzev, Ilan Nachman, Eli Levin, et al. RICOR K527 highly reliable linear cooler: applications and model overview[C]//Proc. of SPIE, 2017, 1080: G1-G17.
[9] Sunpower. Cryocoolers Overview[EB/OL]. [2020-12-28]. https://www.sunpowerinc.com/products/stirling-cryocoolers.
[10] Veprik A M, Babitsky V I, Pundak N, et al. Vibration control of linear split Stirling cryogenic cooler for airborne infrared application[J]. Shock and Vibration, 2000, 7(6): 363-379. DOI: 10.1155/2000/962193
[11] 孙述泽, 闫春杰. 动力吸振器在斯特林制冷机振动控制中的应用[J]. 低温与超导, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm SUN Shuze, YAN Chunjie. Application of dynamic vibration absorber in vibration control of Stirling refrigerator[J]. Cryogenics and Superconductivity, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm
[12] Kopasakis, George, Cairelli, et al. Adaptive vibration reduction controls for a cryocooler with a passive balancer[J]. AIP Conference Proceedings, 2002, 613(1): 1605. http://hdl.handle.net/2060/20020005788
[13] Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Transaction of ASME, 1928, 50: 241. http://ci.nii.ac.jp/naid/10007651142
[14] Veprik A, Zechtzer S, Pundak N, et al. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications[C]// AIP Conference Proceedings, 2011, 1434: 1473-1480.