单活塞线性压缩机用动力吸振器理论分析与Matlab仿真

孔德锐, 夏明, 李海英, 陈军, 赵鹏

孔德锐, 夏明, 李海英, 陈军, 赵鹏. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021.
引用本文: 孔德锐, 夏明, 李海英, 陈军, 赵鹏. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021.
KONG Derui, XIA Ming, LI Haiying, CHEN Jun, ZHAO Peng. Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor[J]. Infrared Technology , 2021, 43(10): 1014-1021.
Citation: KONG Derui, XIA Ming, LI Haiying, CHEN Jun, ZHAO Peng. Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor[J]. Infrared Technology , 2021, 43(10): 1014-1021.

单活塞线性压缩机用动力吸振器理论分析与Matlab仿真

详细信息
    作者简介:

    孔德锐(1993-),男,云南昭通人,硕士研究生,研究方向:小型低温制冷机。E-mail:1024197919@qq.com

    通讯作者:

    夏明(1977-),男,研究员,主要从事小型低温制冷机研究。E-mail:15969586435@163.com

  • 中图分类号: TB652

Theoretical Analysis and Matlab Simulation of Dynamic Vibration Absorber for Single-Piston Linear Compressor

  • 摘要: 单活塞线性斯特林制冷机由于其降温速度快、质量小和可靠性高等特点,目前正广泛用于红外探测器中,但是由于压缩机运行时产生的振动会严重影响探测器成像质量,所以在振动抑制方面动力吸振器的使用成为单活塞线性压缩机的最佳减振方式。基于此,本文首先论述了动力吸振器在单活塞线性压缩机减振方面的作用,并举例介绍了当前单活塞线性压缩机用动力吸振器的基本结构。为了不失理论分析的一般性,在动力吸振器与压缩机振动模型的理论计算中引入了几个重要的无量纲参数。最后在此基础上,利用Matlab软件对动力吸振器与压缩机模型进行振动幅频特性仿真。
    Abstract: Single-piston linear Stirling cryocoolers are widely used in infrared detectors owing to their fast cooling, lightweight, and high reliability. However, the vibration generated by the compressor during operation considerably affects the imaging quality of the detector. Therefore, the use of a dynamic vibration absorber has become the best vibration reduction method for single-piston linear compressors. First, this article discusses the role of a dynamic vibration absorber in damping single-piston linear compressors and provides an example of the basic structure of current single-piston linear compressors. Second, to generalize the theoretical analysis, several important dimensionless parameters are introduced in the theoretical calculation of the dynamic vibration absorber and compressor vibration model. Finally, Matlab is used to simulate the vibration amplitude-frequency characteristics of the dynamic vibration absorber and compressor model
  • 图  1   动磁式单活塞压缩机结构示意图(a)和剖面图(b)

    Figure  1.   Schematic diagram (a) and cross-sectional view (b) of the moving magnet single-piston compressor

    图  2   单活塞压缩机振动示意图

    Figure  2.   Vibration diagram of a single-piston compressor

    图  3   SX030压缩机用动力吸振器爆炸图(a),装配图(b)

    Figure  3.   Exploded view of the dynamic vibration absorber for SX030 compressor (a), assembly view (b)

    图  4   K527制冷机用动力吸振器爆炸图(a),实物图(b)

    Figure  4.   Exploded view (a), physical view (b) of the dynamic vibration absorber for K527 cryocooler

    图  5   Sunpower制冷机与动力吸振器装配实图

    Figure  5.   The actual assembly diagram of the Sunpower refrigerator and the dynamic vibration absorber

    图  6   装配动力吸振器的单活塞线性压缩机

    Figure  6.   Single-piston linear compressor equipped with dynamic vibration absorber

    图  7   振动模型

    Figure  7.   Vibration model

    图  8   压缩机使用动力吸振器前(a)后(b)振动曲线

    Figure  8.   Vibration curves of compressor without (a) and with (b) dynamic vibration absorber

    图  9   压缩机幅频特性曲线

    Figure  9.   Compressor amplitude-frequency characteristic curves

    图  10   不同μ值对应的压缩机幅频特性Matlab仿真曲线

    Figure  10.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different μ values

    图  11   不同z值对应的压缩机幅频特性Matlab仿真曲线

    Figure  11.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different z values

    图  12   RICOR公司外部柔性板弹簧隔振器(a)、螺旋弹簧隔振器(b)

    Figure  12.   RICOR's external flexible plate spring vibration isolator (a), coil spring vibration isolator (b)

    图  13   不同ξ2值对应的压缩机幅频特性Matlab仿真曲线

    Figure  13.   Matlab simulation curves of compressor amplitude-frequency characteristics corresponding to different ξ2 values

    表  1   不同类型斯特林制冷机技术特点[1]

    Table  1   Technical characteristics of different types of Stirlingcryocoolers

    Parameter Integral rotary Split linear
    single piston
    Split linear dual
    opposed piston
    Cooling time √√     √√√     √√√
    Weight √√√     √√     √√
    Vibration √√√     √     √√
    Integration √√√     √     √√
    MTTF(Mean time to failure) √√     √√√     √√√
    下载: 导出CSV

    表  2   K527和SX030压缩机相关参数

    Table  2   Related parameters of K527 and SX030 compressors

    Manufacturer/Cryocooler Physical dimension/mm Weight/g Input power/W Vibration/N
    RICOR/K527 63×33.5 200 3.5 11
    RICOR/K527+ Vibration Mount 63×33.5 220 3.5 2
    RICOR/K527+ Vibration Mount+DVA 93×33.5 300 3.5 0.03
    AIM/SX030 61×33 280 3.3 >8
    AIM/SX030+ DVA 75×33 380 3.3 <0.17
    下载: 导出CSV
  • [1]

    Katz A, Segal V, Filis A, et al. RICOR's Cryocoolers development and optimization for HOT IR detectors[C]//Proc. of SPIE, Defense + Security, International Society for Optics and Photonics, 2012, 8353: 83531U.

    [2] 杨宝玉, 吴亦农. 空间机械制冷机的振动控制研究进展[C]//第八届全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集, 2007: 6.

    YANG Baoyu, WU Yinong. Research progress of vibration control of space mechanical refrigerator[C]//The 8th National Cryogenic Engineering Conference and China Aerospace Cryogenic Professional Information Network 2007 Academic Exchange Conference, 2007: 6.

    [3]

    RühlichI, Mai M, Rosenhagen C, et al. Compact high efficiency linear cryocooler in single piston moving magnet design for HOT detectors[C]//SPIE Defense, Security, and Sensing, 2012, 8353: 83531T.

    [4]

    Veprik A, Zechtzer S, Pundak N. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2010: 7660.

    [5] 金涛, 郑水英, 谢洁飞, 等. 直线压缩机的研究现状与发展[J]. 中国机械工程, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm

    JIN Tao, ZHENG Shuiying, XIE Jiefei. Research status and development of linear compressors[J]. China Mechanical Engineering, 2004, 15(8): 1405-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX200415023.htm

    [6] 邰晓亮. 动磁式直线电机驱动微小型活塞压缩机理论分析及实验研究[D]. 上海: 上海交通大学, 2009.

    TAI Xiaoliang. Theoretical analysis and experimental study of a miniature piston compressor driven by a moving magnet linear motor[D]. Shanghai: Shanghai Jiaotong University, 2009.

    [7]

    Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers[C]//Proc. Of SPIE, 2007, 6542: 65422F.

    [8]

    Sergey Riabzev, Ilan Nachman, Eli Levin, et al. RICOR K527 highly reliable linear cooler: applications and model overview[C]//Proc. of SPIE, 2017, 1080: G1-G17.

    [9]

    Sunpower. Cryocoolers Overview[EB/OL]. [2020-12-28]. https://www.sunpowerinc.com/products/stirling-cryocoolers.

    [10]

    Veprik A M, Babitsky V I, Pundak N, et al. Vibration control of linear split Stirling cryogenic cooler for airborne infrared application[J]. Shock and Vibration, 2000, 7(6): 363-379. DOI: 10.1155/2000/962193

    [11] 孙述泽, 闫春杰. 动力吸振器在斯特林制冷机振动控制中的应用[J]. 低温与超导, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm

    SUN Shuze, YAN Chunjie. Application of dynamic vibration absorber in vibration control of Stirling refrigerator[J]. Cryogenics and Superconductivity, 2011, 39(6): 13-15, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201106004.htm

    [12]

    Kopasakis, George, Cairelli, et al. Adaptive vibration reduction controls for a cryocooler with a passive balancer[J]. AIP Conference Proceedings, 2002, 613(1): 1605. http://hdl.handle.net/2060/20020005788

    [13]

    Ormondroyd J, Den Hartog J P. The theory of the dynamic vibration absorber[J]. Transaction of ASME, 1928, 50: 241. http://ci.nii.ac.jp/naid/10007651142

    [14]

    Veprik A, Zechtzer S, Pundak N, et al. Low vibration microminiature split Stirling cryogenic cooler for infrared aerospace applications[C]// AIP Conference Proceedings, 2011, 1434: 1473-1480.

图(13)  /  表(2)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  86
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 修回日期:  2021-08-10
  • 刊出日期:  2021-10-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日