Citation: | TIAN Lifan, YANG Shen, LIANG Jiaming, WU Jin. Infrared and Visible Image Fusion Based on SGWT and Multi-Saliency[J]. Infrared Technology , 2022, 44(7): 676-685. |
[1] |
Goshtasby A, Nikolov S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114-118. DOI: 10.1016/j.inffus.2006.04.001
|
[2] |
Toet A, Hogervorst M A, Nikolov S G, et al. Towards cognitive image fusion[J]. Information Fusion, 2010, 11(2): 95-113. DOI: 10.1016/j.inffus.2009.06.008
|
[3] |
Falk H. Prolog to a categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8): 1315-1326 DOI: 10.1109/5.775414
|
[4] |
GAO Y, MA J, Yuille A L. Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2545-2560. DOI: 10.1109/TIP.2017.2675341
|
[5] |
LIU C H, QI Y, DING W R. Infrared and visible image fusion method based on saliency detection in sparse domain[J]. Infrared Physics & Technology, 2017, 83: 94-102.
|
[6] |
杨风暴, 董安冉, 张雷, 等. DWT、NSCT和改进PCA协同组合红外偏振图像融合[J]. 红外技术, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
YANG Fengbao, DONG Anran, ZHANG Lei, et al. Infrared polarization image fusion using the synergistic combination of DWT, NSCT and improved PCA[J]. Infrared Technology, 2017, 39(3): 201-208. http://hwjs.nvir.cn/article/id/hwjs201703001
|
[7] |
董安勇, 杜庆治, 苏斌, 等. 基于卷积神经网络的红外与可见光图像融合[J]. 红外技术, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, et al. Infrared and visible image fusion based on convolutional neural network[J]. Infrared Technology, 2020, 42(7): 660-669. http://hwjs.nvir.cn/article/id/hwjs202007009
|
[8] |
MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[9] |
David K Hammond, Pierre Vandergheynst, Rémi Gribonval. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30: 129-150. DOI: 10.1016/j.acha.2010.04.005
|
[10] |
Morrone M C, Ross J, Burr D C, et al. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253. DOI: 10.1038/324250a0
|
[11] |
ZHANG L, ZHANG L, MOU X, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. DOI: 10.1109/TIP.2011.2109730
|
[12] |
ZHOU Z, LI S, WANG B. Multi-scale weighted gradient-based fusion for multi-focus images[J]. Information Fusion, 2014, 20: 60-72. DOI: 10.1016/j.inffus.2013.11.005
|
[13] |
MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
|
[14] |
LI H, Manjunath B S, Mitra S. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245. DOI: 10.1006/gmip.1995.1022
|
[15] |
Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. DOI: 10.1016/j.inffus.2006.02.001
|
[16] |
LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. DOI: 10.1109/TIP.2013.2244222
|
[17] |
LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84. DOI: 10.1016/j.inffus.2010.03.002
|
[18] |
YU L, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. DOI: 10.1016/j.inffus.2014.09.004
|
[19] |
ZHU Z, ZHENG M, QI G, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. DOI: 10.1109/ACCESS.2019.2898111
|
[20] |
张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315. DOI: 10.3724/SP.J.1004.2014.00306
ZHANG Xiao-Li, LI Xiong-Fei, LI Jun. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315. Doi: 10.3724/SP.J.1004.2014.00306
|
[1] | XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034. |
[2] | WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924. |
[3] | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[4] | SUN Bin, ZHUGE Wuwei, GAO Yunxiang, WANG Zixuan. Infrared and Visible Image Fusion Based on Latent Low-Rank Representation[J]. Infrared Technology , 2022, 44(8): 853-862. |
[5] | MEI Jiacheng, WANG Rui, YE Hanmin. Compressive Fusion and Target Detection Based on Sparse Representation[J]. Infrared Technology , 2016, 38(3): 218-224. |
[6] | SONG Bin, WU Le-hua, TANG Xiao-jie, WEN Yu-qiang, MOU Yu-fei. An Image Fusion Algorithm Based on DCT Sparse Representation and Dual-PCNN[J]. Infrared Technology , 2015, (4): 283-288. |
[7] | WANG Zhi-she, YANG Feng-bao, PENG Zhi-hao. Multi-source Heterogeneous Image Fusion Based on NSST and Sparse Presentation[J]. Infrared Technology , 2015, (3): 210-217. |
[8] | SUN Jun-ding, ZHAO Hui-hui. Sparse Representation and Applications in Image Processing[J]. Infrared Technology , 2014, (7): 533-537. |
[9] | GUAN Xue-wei, LIU Xian-zhi, LUO Zhen-bao. Object Tracking Algorithm Based on Region Covariance Matrix[J]. Infrared Technology , 2009, 31(2): 99-102. DOI: 10.3969/j.issn.1001-8891.2009.02.009 |
[10] | ZHANG Su-wen, CHEN Juan. A Image Fusion Method Based on Non-negative Matrix Factorization and Infrared Feature[J]. Infrared Technology , 2008, 30(8): 446-449. DOI: 10.3969/j.issn.1001-8891.2008.08.004 |
1. |
张健,黄安穴. 基于划区域宇宙算法的红外与可见光图像融合研究. 光电子·激光. 2024(09): 962-970 .
![]() | |
2. |
巩稼民,刘尚辉,金库,刘海洋,魏戌盟. 基于改进的区域生长法与引导滤波的图像融合. 激光与光电子学进展. 2023(16): 156-163 .
![]() | |
3. |
邢静,刘小虎. 基于可见光与红外图像融合的目标跟踪技术研究. 电子制作. 2022(22): 44-46 .
![]() |