Citation: | XIONG Hui, LI Ruihua, LIU Hai, YAN Xinjie, SHU Junyi, ZHENG Jie, FENG Jianwei, FENG Ruohan, LIN Yu, WU Jiajun, LIN Dandan, SONG Zhihang, ZHANG Jin. Stability Control Method for Infrared Search and Track System Based on Mobile Platform[J]. Infrared Technology , 2024, 46(6): 634-645. |
Infrared search and tracking systems based on the mobile platform have become the mainstream trend of the new generation in optoelectronic search and track systems, and miniaturization and lightweight guarantee high mobility. The angular velocity disturbance, coupled with the carrier's motion attitude change and internal torque disturbance of the system, raises serious challenges to the optical-axis stability control of the optoelectronic load. The traditional optic-axis stability method based on a combination of multi-axis, multi-frame, and high-precision gyro feedback control, is no longer applicable. In this study, a double-velocity closed-loop same-order cascade control method is proposed based on square PI and Luenberger disturbance observation and feedforward, for the optical axis stability control of the optoelectronic load on a two-axis two-frame mobile platform infrared search and tracking system. Simulations and experiments show that compared with the conventional single-gyro closed-loop and double-velocity closed-loop stability control methods, the proposed stability control method can effectively improve the stability accuracy of the optical axis under low-frequency disturbance of the carrier's motion. Under a disturbance of 1°/1 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 2.7817 μrad and that of the actual experiment improved to 35.85 μrad. Under a disturbance of 1° /2 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 38.199 μrad and that of the actual experiment improved to 119.1 μrad. Finally, using the stability control method proposed in this study, the two-axis two-frame infrared search and track system based on the mobile platform effectively overcame the low-frequency angular velocity disturbance coupled with the carrier's motion attitude change between marching, to realize a highly stable and highly dynamic optical-axis-oriented control performance of the optoelectronic load.
[1] |
刘忠领, 于振红, 李立仁, 等. 红外搜索跟踪系统的研究现状与发展趋势[J]. 现代防御技术, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm
LIU Zhongling, YU Zhenhong, LI Liren, et al. Status and development trend of infrared search and track system[J]. Modern Defence Technology, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm
|
[2] |
吴晗平. 红外搜索系统[M]. 北京: 国防工业出版社, 2013.
WU Hanping. Infrared Search System[M]. Beijing: National Defense Industry Press, 2013.
|
[3] |
熊辉, 林宇, 张雁伟, 等. 一种基于小惯量红外稳定平台的复合电流控制方法[J]. 红外技术, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72
XIONG Hui, LIN Yu, ZHANG Yanwei, et al. A composite current control method based on small inertia infrared stable platform[J]. Infrared Technology, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72
|
[4] |
唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm
TANG Tao, MA Jiaguang, CHEN Hongbin, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm
|
[5] |
谢瑞宏. 机载光电平台伺服系统稳定与跟踪控制技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.
XIE Ruihong. The Research of Stabilization and Tracking Control Techniques on Airborne Opto-electric Platform Servo System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2017.
|
[6] |
姬伟. 陀螺稳定光电跟踪平台伺服控制系统研究[D]. 南京: 东南大学, 2006.
JI Wei. Research on Servo Control System of Gyro Stabilized and Opto-Electronic Tracking Platform[D]. Nanjing: Southeast University, 2017.
|
[7] |
方宇超. 光电跟踪稳定平台控制系统关键技术研究[D]. 长春: 长春理工大学, 2018.
FANG Yuchao. Research on Key Technologies of Control System for Photoelectric Tracking Stabilized Platform[D]. Changchun: Changchun University of Science and Technology, 2018.
|
[8] |
孔德杰. 机载光电平台扰动力矩抑制和改善研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2013.
KONG Dejie. Restraints and improvement of disturbance torque of airborne optoelectronic platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013.
|
[9] |
魏伟. 高精度机载光电平台视轴稳定技术研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2015.
WEI Wei. The Research of Optical axis stabilization of the Airborne Photoelectric Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
|
[10] |
蔡华祥. 望远镜中跟踪架的扰动补偿及精密控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2016.
CAI Huaxiang. Disturbance Compensation and Precision Control Techniques of Tracking Gimbal on Telescope[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.
|
[11] |
刘京. 基于永磁同步电机的大型望远镜低速伺服系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.
LIU Jing. Research on Low-Speed Servo System of Large Telescope based on Permanent Magnet Synchronous Motor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.
|
[12] |
唐涛, 杨涛, 黄永梅, 等. 具有延迟特性的FSM系统中PI-PI控制器[J]. 光电工程, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm
TANG Tao, YANG Tao, HUANG Yongmei, et al. PI-PI controller for the time delay control system of FSM[J]. Opto-Electronic Engineering, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm
|
[13] |
张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm
ZHANG Liangzong, YANG Tao, WU Yun, et al. Image measurement-based two-stage control of Stewart platform[J]. Opto-Electronic Engineering, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm
|
[14] |
嵇婷, 纪明, 胥青青, 等. 机载光电稳定平台建模及动态特性分析[J]. 激光与红外, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm
JI Ting, JI Ming, XU Qingqing, et al. Modeling and dynamic characteristics analysis of airborne photoelectric stabilization platform[J]. Laser & Infrared, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm
|
[15] |
任维. 运动平台下光电跟踪系统的抗扰控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2020.
REN Wei. Research on Anti-interference Control Technology of Optoelectronic Tracking System Under Moving Platform[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020.
|
[16] |
王正玺. 机载光电侦察平台高精度视轴稳定及像移补偿控制技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.
WANG Zhengxi. Research on High Precision LOS Stabilization and Image Motion Compensation Control Technology of Aeronautical Photoelectric Stabilization Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.
|
[17] |
夏先齐. 航空光电稳定平台粗精双稳定控制研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2021.
XIA Xianqi. Research on Coarse and Fine Dual Stability Control of Aviation Photoelectric Stabilized Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.
|
[18] |
张艳, 张淑梅, 乔彦峰, 等. 基于舰载光电设备参考模型扰动估计的前馈控制[J]. 光学精密工程, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm
ZHANG Yan, ZHANG Shumei, QIAO Yanfeng, et al. Feedforward control based on reference model disturbance observer of carrier-based optoelectronic theodolite[J]. Optics and Precision Engineering, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm
|
[19] |
MA Rongqi, WANG Qiang, XIA Yunxia, et al. Disturbance com-pensation of a multiaperture imaging system based on a coupling rotating prism using an improved model compensation control[J]. Applied Optics, 2021, 60(16): 4798-4806.
|
[20] |
阎歆婕, 林宇, 李建, 等. 温度约束的MEMS陀螺零漂补偿模型[J]. 红外技术, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014
YAN Xinjie, LIN Yu, LI Jian, et al. Compensation model of MEMS gyroscope's null shift based on temperature constraint algorithm[J]. Infrared Technology, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014
|
[21] |
乔治∙埃利斯. 控制系统设计指南[M]. 4版: 汤晓君译. 北京: 机械工业出版社, 2016.
George Ellis. Control System and Design Guide[M]. 4th Edition: Tang Xiaojun translated. Beijing: China Machine Press, 2016.
|
[1] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[2] | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[3] | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[4] | HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088. |
[5] | CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403. |
[6] | YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221. |
[7] | LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664. |
[8] | JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77. |
[9] | LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61. |
[10] | FAN Ming-zhe, WANG Lu-ping, ZHANG Lu-ping. Regional Detection Algorithm Based on Double Error Reconstruction[J]. Infrared Technology , 2015, 37(11): 962-969. |
1. |
靳铁柱,刘生彦. 改进背景减法下人体运动模糊图像检测仿真. 计算机仿真. 2025(03): 304-308 .
![]() | |
2. |
王封疆,王梦飞,周杰. 基于CHEBWO的多目标棉田图像增强算法. 石河子大学学报(自然科学版). 2024(04): 505-513 .
![]() | |
3. |
张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .
![]() |