XIONG Hui, LI Ruihua, LIU Hai, YAN Xinjie, SHU Junyi, ZHENG Jie, FENG Jianwei, FENG Ruohan, LIN Yu, WU Jiajun, LIN Dandan, SONG Zhihang, ZHANG Jin. Stability Control Method for Infrared Search and Track System Based on Mobile Platform[J]. Infrared Technology , 2024, 46(6): 634-645.
Citation: XIONG Hui, LI Ruihua, LIU Hai, YAN Xinjie, SHU Junyi, ZHENG Jie, FENG Jianwei, FENG Ruohan, LIN Yu, WU Jiajun, LIN Dandan, SONG Zhihang, ZHANG Jin. Stability Control Method for Infrared Search and Track System Based on Mobile Platform[J]. Infrared Technology , 2024, 46(6): 634-645.

Stability Control Method for Infrared Search and Track System Based on Mobile Platform

More Information
  • Received Date: August 20, 2023
  • Revised Date: November 16, 2023
  • Available Online: June 23, 2024
  • Infrared search and tracking systems based on the mobile platform have become the mainstream trend of the new generation in optoelectronic search and track systems, and miniaturization and lightweight guarantee high mobility. The angular velocity disturbance, coupled with the carrier's motion attitude change and internal torque disturbance of the system, raises serious challenges to the optical-axis stability control of the optoelectronic load. The traditional optic-axis stability method based on a combination of multi-axis, multi-frame, and high-precision gyro feedback control, is no longer applicable. In this study, a double-velocity closed-loop same-order cascade control method is proposed based on square PI and Luenberger disturbance observation and feedforward, for the optical axis stability control of the optoelectronic load on a two-axis two-frame mobile platform infrared search and tracking system. Simulations and experiments show that compared with the conventional single-gyro closed-loop and double-velocity closed-loop stability control methods, the proposed stability control method can effectively improve the stability accuracy of the optical axis under low-frequency disturbance of the carrier's motion. Under a disturbance of 1°/1 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 2.7817 μrad and that of the actual experiment improved to 35.85 μrad. Under a disturbance of 1° /2 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 38.199 μrad and that of the actual experiment improved to 119.1 μrad. Finally, using the stability control method proposed in this study, the two-axis two-frame infrared search and track system based on the mobile platform effectively overcame the low-frequency angular velocity disturbance coupled with the carrier's motion attitude change between marching, to realize a highly stable and highly dynamic optical-axis-oriented control performance of the optoelectronic load.

  • [1]
    刘忠领, 于振红, 李立仁, 等. 红外搜索跟踪系统的研究现状与发展趋势[J]. 现代防御技术, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm

    LIU Zhongling, YU Zhenhong, LI Liren, et al. Status and development trend of infrared search and track system[J]. Modern Defence Technology, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm
    [2]
    吴晗平. 红外搜索系统[M]. 北京: 国防工业出版社, 2013.

    WU Hanping. Infrared Search System[M]. Beijing: National Defense Industry Press, 2013.
    [3]
    熊辉, 林宇, 张雁伟, 等. 一种基于小惯量红外稳定平台的复合电流控制方法[J]. 红外技术, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72

    XIONG Hui, LIN Yu, ZHANG Yanwei, et al. A composite current control method based on small inertia infrared stable platform[J]. Infrared Technology, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72
    [4]
    唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm

    TANG Tao, MA Jiaguang, CHEN Hongbin, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm
    [5]
    谢瑞宏. 机载光电平台伺服系统稳定与跟踪控制技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    XIE Ruihong. The Research of Stabilization and Tracking Control Techniques on Airborne Opto-electric Platform Servo System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2017.
    [6]
    姬伟. 陀螺稳定光电跟踪平台伺服控制系统研究[D]. 南京: 东南大学, 2006.

    JI Wei. Research on Servo Control System of Gyro Stabilized and Opto-Electronic Tracking Platform[D]. Nanjing: Southeast University, 2017.
    [7]
    方宇超. 光电跟踪稳定平台控制系统关键技术研究[D]. 长春: 长春理工大学, 2018.

    FANG Yuchao. Research on Key Technologies of Control System for Photoelectric Tracking Stabilized Platform[D]. Changchun: Changchun University of Science and Technology, 2018.
    [8]
    孔德杰. 机载光电平台扰动力矩抑制和改善研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2013.

    KONG Dejie. Restraints and improvement of disturbance torque of airborne optoelectronic platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013.
    [9]
    魏伟. 高精度机载光电平台视轴稳定技术研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2015.

    WEI Wei. The Research of Optical axis stabilization of the Airborne Photoelectric Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
    [10]
    蔡华祥. 望远镜中跟踪架的扰动补偿及精密控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2016.

    CAI Huaxiang. Disturbance Compensation and Precision Control Techniques of Tracking Gimbal on Telescope[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.
    [11]
    刘京. 基于永磁同步电机的大型望远镜低速伺服系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    LIU Jing. Research on Low-Speed Servo System of Large Telescope based on Permanent Magnet Synchronous Motor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.
    [12]
    唐涛, 杨涛, 黄永梅, 等. 具有延迟特性的FSM系统中PI-PI控制器[J]. 光电工程, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm

    TANG Tao, YANG Tao, HUANG Yongmei, et al. PI-PI controller for the time delay control system of FSM[J]. Opto-Electronic Engineering, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm
    [13]
    张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm

    ZHANG Liangzong, YANG Tao, WU Yun, et al. Image measurement-based two-stage control of Stewart platform[J]. Opto-Electronic Engineering, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm
    [14]
    嵇婷, 纪明, 胥青青, 等. 机载光电稳定平台建模及动态特性分析[J]. 激光与红外, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm

    JI Ting, JI Ming, XU Qingqing, et al. Modeling and dynamic characteristics analysis of airborne photoelectric stabilization platform[J]. Laser & Infrared, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm
    [15]
    任维. 运动平台下光电跟踪系统的抗扰控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2020.

    REN Wei. Research on Anti-interference Control Technology of Optoelectronic Tracking System Under Moving Platform[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020.
    [16]
    王正玺. 机载光电侦察平台高精度视轴稳定及像移补偿控制技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.

    WANG Zhengxi. Research on High Precision LOS Stabilization and Image Motion Compensation Control Technology of Aeronautical Photoelectric Stabilization Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.
    [17]
    夏先齐. 航空光电稳定平台粗精双稳定控制研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2021.

    XIA Xianqi. Research on Coarse and Fine Dual Stability Control of Aviation Photoelectric Stabilized Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.
    [18]
    张艳, 张淑梅, 乔彦峰, 等. 基于舰载光电设备参考模型扰动估计的前馈控制[J]. 光学精密工程, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm

    ZHANG Yan, ZHANG Shumei, QIAO Yanfeng, et al. Feedforward control based on reference model disturbance observer of carrier-based optoelectronic theodolite[J]. Optics and Precision Engineering, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm
    [19]
    MA Rongqi, WANG Qiang, XIA Yunxia, et al. Disturbance com-pensation of a multiaperture imaging system based on a coupling rotating prism using an improved model compensation control[J]. Applied Optics, 2021, 60(16): 4798-4806.
    [20]
    阎歆婕, 林宇, 李建, 等. 温度约束的MEMS陀螺零漂补偿模型[J]. 红外技术, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014

    YAN Xinjie, LIN Yu, LI Jian, et al. Compensation model of MEMS gyroscope's null shift based on temperature constraint algorithm[J]. Infrared Technology, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014
    [21]
    乔治∙埃利斯. 控制系统设计指南[M]. 4版: 汤晓君译. 北京: 机械工业出版社, 2016.

    George Ellis. Control System and Design Guide[M]. 4th Edition: Tang Xiaojun translated. Beijing: China Machine Press, 2016.
  • Cited by

    Periodical cited type(6)

    1. 林斌,刘亚军,吴燕东,董晋国. 煤矿带式输送机自换电巡检机器人关键技术研究. 煤炭技术. 2025(03): 248-250 .
    2. 常凯旋,黄建华,孙希延,罗键,包世涛,黄焕生. 基于双模态图像融合的无人机光学小目标检测算法. 激光与光电子学进展. 2025(04): 279-293 .
    3. 宋冬梅. 基于模糊数学理论的灰度图像边缘信息智能检测方法. 电子设计工程. 2025(08): 130-135 .
    4. 杨家全,李邦源,丁贞煜,马文龙,汪航,孙宏滨. 基于多重先验的无监督学习红外图像增强算法. 云南电力技术. 2024(02): 33-40 .
    5. 贺养慧. 基于生成对抗网络的可见光和红外图像融合研究. 激光杂志. 2024(10): 120-124 .
    6. 周君,高焱,姜晴. 双边滤波下的低光照激光雷达图像超分辨增强技术. 激光杂志. 2024(12): 131-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return