ZHAO Zihui, ZHOU Yongkang, ZENG Bangze, TANG Xingfen, FU Zhiyu, YIN Yongcheng. A Review of Infrared Image Denoising[J]. Infrared Technology , 2025, 47(3): 299-306.
Citation: ZHAO Zihui, ZHOU Yongkang, ZENG Bangze, TANG Xingfen, FU Zhiyu, YIN Yongcheng. A Review of Infrared Image Denoising[J]. Infrared Technology , 2025, 47(3): 299-306.

A Review of Infrared Image Denoising

More Information
  • Received Date: December 14, 2023
  • Revised Date: February 28, 2024
  • The structure of infrared imaging systems and complexity of the imaging environment lead to complex types of noise during infrared image processing, which can seriously affect image quality. This paper first describes the structure of the infrared imaging system and source of image noise, further discussing traditional and improved algorithms for infrared image noise reduction from the perspective of space and frequency domains, air-frequency combination, and deep learning. In this study, we focused on deep learning noise reduction algorithms, in view of their broad application and excellent noise reduction effect. The classical noise reduction algorithm was selected to conduct noise reduction experiments on real noisy infrared images. Experiments show that the deep-learning algorithm surpasses the traditional algorithm in performance.

  • [1]
    唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006

    TANG Lin, LIU Lin, SU Junhong. Research on modeling and simulation of infrared image noise[J]. Infrared Technology, 2014, 36(7): 542-548. http://hwjs.nvir.cn/article/id/hwjs201407006
    [2]
    王加, 周永康, 李泽民, 等. 非制冷红外图像降噪算法综述[J]. 红外技术, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27

    WANG Jia, ZHOU Yongkang, LI Zemin, et al. Review of noise reduction algorithms for uncooled infrared images[J]. Infrared Technology, 2021, 43(6): 557-565. http://hwjs.nvir.cn/article/id/380dcf6e-de3d-4411-ab70-e246d5c8ea27
    [3]
    李相迪, 黄英, 张培晴, 等. 红外成像系统及其应用[J]. 激光与红外, 2014, 44(3): 229-234. DOI: 10.3969/j.issn.1001-5078.2014.03.01

    LI Xiangdi, HUANG Ying, ZHANG Peiqing, et al. Infrared imaging system and its application[J]. Laser & Infrared, 2014, 44(3): 229-234. DOI: 10.3969/j.issn.1001-5078.2014.03.01
    [4]
    方莉, 张萍. 经典图像去噪算法研究综述[J]. 工业控制计算机, 2010, 23(11): 73-74. DOI: 10.3969/j.issn.1001-182X.2010.11.034

    FANG Li, ZHANG Ping. Research review of classical image denoising algorithms[J]. Industrial Control Computer, 2010, 23(11): 73-74. DOI: 10.3969/j.issn.1001-182X.2010.11.034
    [5]
    张宇, 王希勤, 彭应宁. 自适应中心加权的改进均值滤波算法[J]. 清华大学学报(自然科学版), 1999(9): 76-78. DOI: 10.3321/j.issn:1000-0054.1999.09.021

    ZHANG Yu, WANG Xiqin, PENG Yingning. An improved mean filtering algorithm with adaptive center weighting[J]. Journal of Tsinghua University (Natural Science Edition), 1999(9): 76-78. DOI: 10.3321/j.issn:1000-0054.1999.09.021
    [6]
    王海菊, 谭常玉, 王坤林, 等. 自适应高斯滤波图像去噪算法[J]. 福建电脑, 2017, 33(11): 5-6.

    WANG Haiju, TAN Changyu, WANG Kunlin, et al. Adaptive Gaussian filter image denoising algorithm[J]. Fujian Computer, 2017, 33(11): 5-6.
    [7]
    李健, 丁小奇, 陈光, 等. 基于改进高斯滤波算法的叶片图像去噪方法[J]. 南方农业学报, 2019, 50(6): 1385-1391. DOI: 10.3969/j.issn.2095-1191.2019.06.31

    LI Jian, DING Xiaoqi, CHEN Guang, et al. Leaf image denoising method based on improved Gaussian filter algorithm[J]. Journal of Southern Agricultural Sciences, 2019, 50(6): 1385-1391. DOI: 10.3969/j.issn.2095-1191.2019.06.31
    [8]
    朱志恩. 中值滤波技术在图像处理中的应用研究[D]. 沈阳: 东北大学, 2008.

    ZHU Zhien. Research on the Application of Median Filter Technology in Image Processing[D]. Shenyang: Northeastern University, 2008.
    [9]
    赵高长, 张磊, 武风波. 改进的中值滤波算法在图像去噪中的应用[J]. 应用光学, 2011, 32(4): 678-682. DOI: 10.3969/j.issn.1002-2082.2011.04.017

    ZHAO Gaochang, ZHANG Lei, WU Fengbo. Application of improved median filter algorithm in image denoising[J]. Journal of Applied Optics, 2011, 32(4): 678-682. DOI: 10.3969/j.issn.1002-2082.2011.04.017
    [10]
    刘智嘉, 夏寅辉, 杨德振, 等. 基于中值滤波器的红外图像噪声处理的改进方法[J]. 激光与红外, 2019, 49(3): 376-380.

    LIU Zhijia, XIA Yinhui, YANG Dezhen, et al. An improved method of infrared image noise processing based on median filter[J]. Laser & Infrared, 2019, 49(3): 376-380.
    [11]
    王玉灵. 基于双边滤波的图像处理算法研究[D]. 西安: 西安电子科技大学, 2010.

    WANG Yuling. Research on Image Processing Algorithm Based on Bilateral Filtering [D]. Xi'an: Xidian University, 2010.
    [12]
    Barash D. Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 844-847. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.cs.bgu.ac.il%2F~dbarash%2FPublications%2FIEEE_PAMI_2002.pdf
    [13]
    Spira A, Kimmel R, Sochen N. A short-time Beltrami kernel for smoothing images and manifolds[J]. IEEE Transactions on Image Processing, 2007, 16(6): 1628-1636. DOI: 10.1109/TIP.2007.894253
    [14]
    Kervrann C, Boulanger J. Optimal spatial adaptation for patch-based image denoising[J]. IEEE Transactions on Image Processing, 2006, 15(10): 2866-2878. http://www.onacademic.com/detail/journal_1000035577432310_51c5.html
    [15]
    李迎春, 孙继平, 付兴建. 基于小波变换的红外图像去噪[J]. 激光与红外, 2006, 36(10): 988-991. DOI: 10.3969/j.issn.1001-5078.2006.10.021

    LI Yingchun, SUN Jiping, FU Jianjian. Infrared image denoising based on wavelet transform [J]. Laser & Infrared, 2006, 36(10): 988-991. DOI: 10.3969/j.issn.1001-5078.2006.10.021
    [16]
    尉世强. 基于小波的图像阈值去噪方法[D]. 青岛: 青岛大学, 2006.

    WEI Shiqiang. Image Threshold Denoising Method Based on Wavelet[D]. Qingdao: Qingdao University, 2006.
    [17]
    单锐, 齐越, 刘文. 一种改进的小波阈值去噪算法[J]. 兰州理工大学学报, 2014, 40(4): 101-104.

    SHAN Rui, QI Yue, LIU Wen. An improved wavelet threshold denoising algorithm[J]. Journal of Lanzhou University of Technology, 2014, 40(4): 101-104.
    [18]
    ZHANG X, LI J, XING J, et al. A particle swarm optimization technique-based parametric wavelet thresholding function for signal denoising[J]. Circuits, Systems, and Signal Processing, 2017, 36: 247-269. DOI: 10.1007/s00034-016-0303-x
    [19]
    矫媛, 黄斌文. 基于小波变换的图像去噪方法综述[J]. 电子制作, 2015(7): 55-56. DOI: 10.3969/j.issn.1006-5059.2015.07.049

    JIAO Yuan, HUANG Binwen. Overview of image denoising methods based on Wavelet transform[J]. Electronic Production, 2015(7): 55-56. DOI: 10.3969/j.issn.1006-5059.2015.07.049
    [20]
    Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. http://www.mendeley.com/research/wavelets-theory-algorithms-applications/
    [21]
    Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. DOI: 10.1109/18.382009
    [22]
    曹硕. 基于非局部均值的图像去噪方法研究[D]. 徐州: 中国矿业大学, 2018.

    CAO Shuo. Research on Image Denoising Method Based on Non-local Mean[D]. Xuzhou: China University of Mining and Technology, 2018.
    [23]
    张军令, 唐卫国. 基于非局部均值滤波的小波红外图像去噪[J]. 红外, 2015, 36(3): 34-38. DOI: 10.3969/j.issn.1672-8785.2015.03.007

    ZHANG Junling, TANG Weiguo. Wavelet infrared image denoising based on non-local mean filtering[J]. Infrared, 2015, 36(3): 34-38. DOI: 10.3969/j.issn.1672-8785.2015.03.007
    [24]
    HEO Y C, KIM K, LEE Y. Image denoising using non-local means (NLM) approach in magnetic resonance (MR) imaging: a systematic review[J]. Applied Sciences, 2020, 10(20): 7028. DOI: 10.3390/app10207028
    [25]
    李希达. 基于非局部自相似性的图像去噪算法[D]. 广州: 华南理工大学, 2020.

    LI Xida. Image Denoising Algorithm Based on Non-Local Self-Similarity[D]. Guangzhou: South China University of Technology, 2020.
    [26]
    徐海. 基于改进三维块匹配滤波的图像去噪算法研究[D]. 贵阳: 贵州大学, 2021.

    XU Hai. Research on Image Denoising Algorithm Based on Improved 3D Block Matching Filter[D]. Guiyang: Guizhou University, 2021.
    [27]
    高陈强, 李佩. 引导滤波和三维块匹配结合的红外图像去噪[J]. 重庆邮电大学学报(自然科学版), 2016, 28(2): 150-155.

    GAO Chenqiang, LI Pei. Infrared image denoising combined with guided filtering and 3D block matching[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2016, 28(2): 150-155.
    [28]
    张哲熙. 基于BM3D的图像去噪算法研究[D]. 西安: 西安电子科技大学, 2017.

    ZHANG Zhexi. Research on Image Denoising Algorithm Based on BM3D[D]. Xi'an: Xidian University, 2017.
    [29]
    DU D, PAN Z, ZHANG P, et al. Compressive sensing image recovery using dictionary learning and shape-adaptive DCT thresholding[J]. Magnetic Resonance Imaging, 2019, 55: 60-71. http://www.xueshufan.com/publication/2890387360
    [30]
    LIU B, LIU J. Overview of image denoising based on deep learning[J]. Journal of Physics: Conference Series, 2019, 1176(2): 022010.
    [31]
    刘迪, 贾金露, 赵玉卿, 等. 基于深度学习的图像去噪方法研究综述[J]. 计算机工程与应用, 2021, 57(7): 1-13.

    LIU Di, JIA Jinlu, ZHAO Yuqing, et al. A review of image denoising methods based on deep learning[J]. Computer Engineering and Applications, 2019, 57(7): 1-13.
    [32]
    朱宜生, 孙成. 基于卷积神经网络的红外图像去噪方法研究[J]. 环境技术, 2019, 37(6): 99-103.

    ZHU Yisheng, SUN Cheng. Research on infrared image denoising method based on Convolutional neural network[J]. Environmental Technology, 2019, 37(6): 99-103.
    [33]
    Kanika G. Study of Deep Learning Techniques on Image Denoising[C]// IOP Conference Series: Materials Science and Engineering, 2021, 1022(1): 012007.
    [34]
    Ilesanmi E A, Ilesanmi O T. Methods for image denoising using convolutional neural network: a review[J]. Complex & Intelligent Systems, 2021, 7(5): 1-20.
    [35]
    LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791
    [36]
    Krizhevsky Alex, Ilya Sutskever, Geoffrey E Hinton. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386
    [37]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv: 1409.1556, https://arxiv.org/abs/1409.1556.
    [38]
    Szegedy Christian, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[J]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9. http://home.ustc.edu.cn/~jzh0103/pdf_link/pdf/1409.4842.pdf
    [39]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [40]
    Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
    [41]
    TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: An overview[J]. Neural Networks, 2020, 131: 251-275.
    [42]
    XU Q, ZHANG C, ZHANG L. Denoising convolutional neural network[C]//2015 IEEE International Conference on Information and Automation, IEEE, 2015: 1184-1187.
    [43]
    LIANG J, LIU R. Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network[C]//2015 8th International Congress on Image and Signal Processing (CISP). IEEE, 2015: 697-701.
    [44]
    CHENG W, LIN L. Application of improved neural network algorithm in image denoising and edge detection[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(6): 269-282.
    [45]
    ZHANG K, ZUO W, GU S, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3929-3938.
    [46]
    KUANG X, SUI X, LIU Y, et al. Single infrared image optical noise removal using a deep convolutional neural network[J]. IEEE Photonics Journal, 2017, 10(2): 1-15. http://ieeexplore.ieee.org/document/7954611/
    [47]
    ZHANG K, ZUO W, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622. http://doc.paperpass.com/patent/arXiv171004026.html
    [48]
    HAN Y, YE J C. Framing U-Net via deep convolutional framelets: Application to sparse-view CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1418-1429. http://ieeexplore.ieee.org/document/8332969/authors
    [49]
    HE Z, CAO Y, DONG Y, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach[J]. Applied Optics, 2018, 57(18): D155-D164.
    [50]
    YAN H, CHEN X, TAN V Y F, et al. Unsupervised image noise modeling with self-consistent GAN[J]. arXiv preprint arXiv: 1906.05762, 2019.
    [51]
    ZHANG K, ZUO W, ZHANG L. Deep plug-and-play super-resolution for arbitrary blur kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1671-1681.
    [52]
    ZHANG K, Gool L V, Timofte R. Deep unfolding network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3217-3226.
    [53]
    LI M, HSU W, XIE X, et al. SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2289-2301. http://d.wanfangdata.com.cn/periodical/8176255348d859f4808a36c988f9abb8
    [54]
    LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
    [55]
    ZHU Y, ZHANG K, LIANG J, et al. Denoising diffusion models for plug-and-play image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 1219-1229.
    [56]
    杨成佳. 图像去噪及其效果评估若干问题研究[D]. 长春: 吉林大学, 2016.

    YANG Chengjia. Research on Some Problems of Image Denoising and Its Effect Evaluation[D]. Changchun: Jilin University, 2016.
  • Related Articles

    [1]YE Ye. A Deep Learning Method for Hyperspectral Detection of Heavy Metal Contaminants in Soil Based on Attention Mechanism[J]. Infrared Technology , 2025, 47(4): 453-458.
    [2]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [3]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [4]WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014.
    [5]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [6]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [7]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [8]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [9]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.
    [10]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.

Catalog

    Article views (61) PDF downloads (42) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return