FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194.
Citation: FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194.

Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier

More Information
  • Received Date: May 23, 2022
  • Revised Date: June 20, 2022
  • To study the effect of the luminance gain of a third-generation low-light-level (LLL) image intensifier on the image quality, we compare and analyze the image quality of the output image under different gain conditions to improve the image quality of a third-generation image intensifier. First, based on the theory of the third-generation LLL image intensifier, it is proven that the luminance gain directly affects the image quality of the image intensifier. Then, via signal-to-noise ratio (SNR) and resolution, two important parameters of the image quality evaluation, image quality evaluation system, and experimental equipment, are set up. Finally, the experimental results show that under moonless illumination, when the luminance gain is at the optimal value, the resolution of the output image is increased from 32 lp/mm to 40.3 lp/mm while the field of view is bright and clear. It has been proven that this research has guiding significance in how to obtain the best image quality of LLL night vision instruments by reasonably setting the luminance gain value in the night environment.
  • [1]
    郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of development of low light level night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
    [2]
    程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [3]
    史继芳, 王生云, 孙宇楠, 等. 三代微光像增强器亮度增益测量装置[J]. 应用光学, 2011, 32(2): 300-302. DOI: 10.3969/j.issn.1002-2082.2011.02.023

    SHI Jifang, WANG Shengyun, SUN Yunan, et al. Third generation of image intensifier brightness gain measurement device[J]. Journal of Applied Optics, 2011, 32(2): 300-302. DOI: 10.3969/j.issn.1002-2082.2011.02.023
    [4]
    刘秉琦, 周斌, 高稚允, 等. 像增强器增益对输出信噪比影响的分析[J]. 光学技术, 2005, 31(1): 120-121, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200501035.htm

    LIU Bingqi, ZHOU Bin, GAO Zhiyun, et al. Analysis of the gain's effect on output signal to noise ratio of image intensifier[J]. Optical Technique, 2005, 31(1): 120-121, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200501035.htm
    [5]
    拜晓锋, 郭晖, 杨书宁, 等. 微光像增强器亮度增益测量及寿命预测[J]. 红外技术, 2019, 41(3): 203-207. http://hwjs.nvir.cn/article/id/hwjs201903001

    BAI Xiaofeng, GUO Hui, YANG Shuning, et al. Luminance gain measurement and life prediction of low-light-level image intensifier[J]. Infrared Technology, 2019, 41(3): 203-207. http://hwjs.nvir.cn/article/id/hwjs201903001
    [6]
    石峰, 程宏昌, 贺英萍, 等. MCP输入电子能量与微光像增强器信噪比的关系[J]. 应用光学, 2008, 29(4): 562-564. DOI: 10.3969/j.issn.1002-2082.2008.04.018

    SHI Feng, CHENG Hongchang, HE Yingping, et al. Optimization for signal to noise ratio of low light level image intensifier[J]. Journal of Applied Optics, 2008, 29(4): 562-564. DOI: 10.3969/j.issn.1002-2082.2008.04.018
    [7]
    王洪刚, 钱芸生, 王勇, 等. 微通道板电子输运特性的仿研[J]. 计算物理, 2013, 30(2): 221-228. DOI: 10.3969/j.issn.1001-246X.2013.02.009

    WANG Honggang, QIAN Yunsheng, WANG Yong, et al. Simulation of electronic transport in micro-channel plate[J]. Chinese Journal of Computational Physics, 2013, 30(2): 221-228. DOI: 10.3969/j.issn.1001-246X.2013.02.009
    [8]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijing: National Defense Industry Press, 2006.
    [9]
    汪贵华. 光电子器件[M]. 北京: 国防工业出版社, 2008.

    WANG Guihua. The Photoelectronic Devices[M]. Beijing: National Defense Industry Press, 2008.
    [10]
    周立伟. 关于微光像增强器的品质因数[J]. 红外与激光工程, 2004, 33(4): 331-337. DOI: 10.3969/j.issn.1007-2276.2004.04.001

    ZHOU Liwei. On figure of merit of low light level image intensifiers[J]. Infrared and Laser Engineering, 2004, 33(4): 331-337. DOI: 10.3969/j.issn.1007-2276.2004.04.001
    [11]
    赵静, 张益军, 常本康, 等. 高性能透射式GaAs光电阴极量子效率拟合与结构研究[J]. 物理学报, 2011, 60(10): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110106.htm

    ZHAO Jing, ZHANG Yijun, CHANG Benkang, et al. Research on quantum efficient fitting and structure of high performance transmission-mode Ga As photocathode[J]. Chinese Journal of Physics, 2011, 60(10): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201110106.htm
    [12]
    董伟, 董煜辉, 周玉鉴, 等. 像增强器通用规范: GJB 2000A-2020[S]. 北京: 中国标准出版社, 2020.

    DONG Wei, DONG Yuhui, ZHOU Yujian, et al. General Specification of Image Intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
    [13]
    邱亚峰, 钱芸生, 常本康. 像增强器亮度增益和等效背景照度测试仪的研制[J]. 红外技术, 2003, 25(5): 76-79. DOI: 10.3969/j.issn.1001-8891.2003.05.020

    QIU Yafeng, QIAN Yunsheng, CHANG Benkang. Research and development of luminance gain and equivalent background input test set for LLL image intensifier[J]. Infrared Technology, 2003, 25(5): 76-79. DOI: 10.3969/j.issn.1001-8891.2003.05.020
    [14]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [15]
    拜晓锋, 尹雷, 胡文, 等. 像增强器亮度增益测试的重复性研究[J]. 红外与激光工程, 2013, 42(2): 495-498. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201302052.htm

    BAI Xiaofeng, YIN Lei, HU Wen, et al. Repetitive characteristic of image intensifier's luminance gain[J]. Infrared and Laser Engineering, 2013, 42(2): 495-498. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201302052.htm
  • Related Articles

    [1]XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26.
    [2]FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.
    [3]CHEN Xiao. Athermalization of Infrared Zoom Optical System with Large Relative Aperture[J]. Infrared Technology , 2021, 43(12): 1183-1187.
    [4]HE Xiangqing, LIAO Xiaojun, DUAN Yuan, ZHANG Haoye. Common Aperture and Athermalization Design of Compact Laser/Infrared Optical System[J]. Infrared Technology , 2020, 42(5): 461-467.
    [5]YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704.
    [6]Design of Long-wavelength Infrared Athermalization Lens for Large-array Detector[J]. Infrared Technology , 2018, 40(11): 1061-1064.
    [7]JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004.
    [8]LV Yin-huan, LEI Cun-dong, CUI Wei-xin. Design and Realization of Athermalizing Optical System for Long-wave Infrared Horizon Sensor[J]. Infrared Technology , 2011, 33(11): 651-654,658. DOI: 10.3969/j.issn.1001-8891.2011.11.007
    [9]CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001
    [10]BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007
  • Cited by

    Periodical cited type(5)

    1. 张萌,刘时成,张松林,朱禹清,吴垚. 大行程-高频响压电驱动纳米定位平台优化设计. 压电与声光. 2024(06): 934-941 .
    2. 刘艳珍,李树杰,张应旭,辛永刚,李志华,林阳,李雄军,秦强,蒋俊,郭建华. 碲镉汞表面处理中异常现象的分析及控制(英文). 红外与毫米波学报. 2023(02): 149-155 .
    3. 魏顺勇,张志勇,杨辉,安辛友,张敏,曾体贤. 酸性条件下的CdSe波片抛光工艺研究. 人工晶体学报. 2018(06): 1280-1285 .
    4. 贺香荣,陆华杰,张亚妮,管建安. 一种浸没透镜结构HgCdTe红外探测器组件环境适应性研究. 光学与光电技术. 2016(05): 89-92 .
    5. 李忠良,陈建才,叶薇,李增寿,刘世能. n-on-p锑化铟薄膜的液相外延生长. 红外技术. 2016(07): 577-580 . 本站查看

    Other cited types(3)

Catalog

    Article views (117) PDF downloads (77) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return