XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26.
Citation: XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26.

Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View

More Information
  • Received Date: September 15, 2022
  • Revised Date: November 22, 2022
  • Following the trend of miniaturization and large fields-of-view for infrared lenses, we designed a large-field-of-view athermalized compact long-wave infrared lens using ZEMAX. The system matches a 384×288@17 μm uncooled long-wave infrared detector with an operating band of 8 μm to 12 μm. The F-number of the system is 1.6. The designed system has a larger field-of-view than a traditional infrared lens, with a full field-of-view reaching 72°. The size of the designed system is small with a total length of only 6.96 mm. The primary lens system lens uses only 3 lenses. Aberration correction and athermalization was realized by combining two infrared materials and six aspherical surfaces. The system has a working temperature range of −40℃ to 60℃. Simulation results show that the MTF of the full field-of-view reaches 0.5 at a spatial frequency of 15 lp/mm and 0.15 at a spatial frequency of 30 lp/mm. Further, to increase the filling factor of the infrared detector and improve energy efficiency, a microlens array is placed in front of the infrared sensor. Miniaturization of the infrared optical system was achieved, providing a solution for the application of thermal imaging cameras on smartphones.
  • [1]
    奚晓, 岑兆丰, 李晓彤. 无热技术在光学系统中的应用[J]. 红外与激光工程, 2005, 34(4): 388-390. DOI: 10.3969/j.issn.1007-2276.2005.04.003

    XI Xiao, CEN Zhaofeng, LI Xiaotong. Application of athermalisation in optical systems[J]. Infrared and Laser Engineering, 2005, 34(4): 388-390. DOI: 10.3969/j.issn.1007-2276.2005.04.003
    [2]
    张凌志. 面向移动端的长波红外成像系统光学设计[D]. 武汉: 华中科技大学, 2017.

    ZHANG Lingzhi. Option Design of Long-Wave Infrared Imaging System for Mobile Devices[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [3]
    田永. 基于非制冷型探测器的红外成像系统设计[D]. 长春: 长春理工大学, 2021.

    TIAN Yong. Design of Infrared Imaging System Based on Uncooled Detector[D]. Changchun: Changchun University of Science and Technology, 2021.
    [4]
    张继艳, 林海峰, 黄章超. 基于硫系玻璃的紧凑式大相对孔径长波红外光学系统无热化设计[J]. 应用光学, 2021, 42(5): 790-795.

    ZHANG Jiyan, LIN Haifeng, HUANG Zhangchao. Compact large relative aperture long wavelength infrared athermalization optical system with chalcogenide glasses[J]. Journal of Applied Optics, 2021, 42(5): 790-795.
    [5]
    王静, 吴越豪, 戴世勋, 等. 硫系玻璃在长波红外无热化连续变焦广角镜头设计中的应用[J]. 红外与激光工程, 2018, 47(3): 165-171.

    WANG Jing, WU Yuehao, DAI Shixun, et al. Application of chalcogenide glass in designing a long-wave infrared athermalized continuous zoom wide-angle lens[J]. Infrared and Laser Engineering, 2018, 47(3): 165-171.
    [6]
    吴晓晴, 孟军和. 使用简单机械结构实现红外光学系统无热化[J]. 红外与激光工程, 2005, 34(4): 391-393. DOI: 10.3969/j.issn.1007-2276.2005.04.004

    WU Xiaojing, MENG Junhe. Athermalizing infrared optical systems by using simple mechanical framework [J]. Infrared and Laser Engineering, 2005, 34(4): 391-393. DOI: 10.3969/j.issn.1007-2276.2005.04.004
    [7]
    王学新, 焦明印. 红外光学系统无热化设计方法的研究[J]. 应用光学, 2009, 30(1): 129-133.

    WANG Xuexin, JIAO Mingyin. Athermalization design for infrared optical systems[J]. Journal of Applied Optics, 2009, 30(1): 129-133.
    [8]
    崔莉, 赵新亮, 李同海, 等. 无调焦非制冷红外光学系统的无热化设计[J]. 红外技术, 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001

    CUI Li, ZHAO Xinliang, LI Tonghai, et al. Athermalization of uncooled infrared optical system without focusing mechanism[J]. Infrared Technology, 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001
    [9]
    武岩, 高春, 魏巍. 基于CMOS图像传感器的微透镜平移算法研究[J]. 现代计算机, 2017(35): 66-70.

    WU Yan, GAO Chun, WEI Wei. The research of microlens shifting algorithm for CMOS Image Sensor[J]. Modern Computer, 2017(35): 66-70.
    [10]
    张以漠. 应用光学[M]. 北京: 电子工业出版社, 2015.

    ZHANG Yimo. Applied Optics[M]. Beijing: Electronic Industry Press, 2015.
    [11]
    尹志东, 向阳, 高健, 等. 1300万像素手机镜头设计[J]. 激光与光电子学进展, 2014, 51(1): 012202.

    YIN Zhidong, XIANG Yang, GAO Jian, et al. Optical design of a 1300 megapixel mobile phone camera lens optics designs[J]. Laser & Optoelectronics Progress, 2014, 51(1): 012202.
    [12]
    于洋, 蹇毅, 潘兆鑫, 等. 红外二次成像无热化光学系统设计与实测[J]. 红外与激光工程, 2013, 42(12): 3180-3184.

    YU Yang, JIAN Yi, PAN Zhaoxin, et al. Design and test-result of re-imaging athermal infrared optical system[J]. Infrared and Laser Engineering, 2013, 42(12): 3180-3184.
    [13]
    路文文, 郭景阳, 陈善勇. 鸥翼型非球面元件的白光干涉拼接测量[J]. 光学学报, 2022, 42(9): 112-122.

    LU Wenwen, GUO Jingyang, CHEN Shanyong. White light interferometry stitching measurement of gull-wing aspheric optics[J]. Acta Optica Sinica, 2022, 42(9): 112-122.
    [14]
    刘丰, 张帆, 边浩, 等. 折射型红外微透镜阵列器件的发展及制备[J]. 激光与光电子学进展, 2020, 57(7): 071607.

    LIU Feng, ZHANG Fan, BIAN Hao, et al. Development and preparation of refractive infrared microlens array device[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071607.
  • Cited by

    Periodical cited type(6)

    1. 刘威剑,黄阳,张生杰,宋俊儒,张超,冀翼,袁群. 基于扩束与辅助测量的大口径红外材料光学均匀性高精度检测. 光子学报. 2025(02): 206-215 .
    2. 缪彦美,子光平,彭明清,应飞飞. 化学气相沉积法制备ZnS中“彩色”来源和可见光散射控制研究. 云南冶金. 2024(05): 108-110+121 .
    3. 黄阳,赵英龙,张生杰,都晓寒,张超. 面向高性能的红外折射式镜头装调技术. 红外与激光工程. 2023(04): 218-226 .
    4. 李树锋,王丽,高东文. 基片温度对脉冲激光沉积ZnS:Co薄膜微结构及光学性质的影响研究. 真空科学与技术学报. 2023(09): 738-744 .
    5. 赵小玻,韦中华,张旭,钱纁,于浩海. 化学气相沉积ZnS、ZnSe研究进展. 人工晶体学报. 2023(12): 2125-2134 .
    6. 汪德文,王俊平,袁厚呈,刘章,周进,邓佳杰,王鑫,吴贲华,章健,王士维. 真空反应烧结制备米级尺寸钇铝石榴石(YAG)透明陶瓷. 无机材料学报. 2023(12): 1483-1484 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return