Citation: | ZHANG Meng, ZHANG Songlin, WU Yao, YANG Peiji, HE Zhou. Optimization Design and Dynamic Analysis of Flexible Mechanism for Large-Angle Fast Mirror[J]. Infrared Technology , 2024, 46(6): 625-633. |
This study presents the design of a flexible mechanism with a large deflection angle for piezoelectric-driven fast-reflecting mirrors, to address the common issue of small deflection range. First, a study was conducted on the correlation among the nested hierarchy, configuration, natural frequency, and amplification factor of the flexible mechanism. Accordingly, a preliminary plan was developed for the design of a three-stage hybrid configuration. The mechanism was discretized into flexible hinges, rigid bodies, and concentrated masses as basic units. Subsequently, a general dynamic stiffness model was constructed for the flexible mechanism using the matrix displacement method. This model establishes a mapping relationship between the structural parameters of the flexible mechanism and the deflection angle of the fast-reflecting mirror. On this basis, a modal analysis of the flexible mechanism was performed, whereby the key dimensional parameters of the fast-reflecting mirror's flexible mechanism were optimized. Compared to similar research conducted domestically and internationally, this configuration achieves a mechanical deflection angle greater than 100 mrad by ensuring miniaturization and a higher first-order natural frequency.
[1] |
谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学精密工程, 2022, 30(11): 1344-1352. DOI: 10.37188/OPE.20213000.0757
TAN S N, WANG F C, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Optics and Precision Engineering, 2022, 30(11): 1344-1352. DOI: 10.37188/OPE.20213000.0757
|
[2] |
朱伟鸿, 汪洋, 王栎皓, 等. 卫星激光通信MEMS快速反射镜可靠性研究进展[J]. 红外与激光工程, 2023, 52(9): 230-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202309024.htm
ZHU W H, WANG Y, WANG L H, et al. Research progress of reliability of MEMS fast steering mirror for satellite laser communication[J]. Infrared and Laser Engineering, 2023, 52(9): 230-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202309024.htm
|
[3] |
YOO H W, VAN ROYEN M E, VAN CAPPELLE-N W A, et al. Automated spherical aberration correction in scanning confocal microscopy[J]. Rev Sci. Instrum. , 2014, 85(12): 9.
|
[4] |
WANG K, XIN H, CAO N, et al. Design of two-axis flexible support structure for fast steering mirror in space cameras[J]. Infrared and Laser Engineering, 2019, 48(12): 1214005. DOI: 10.3788/IRLA201948.1214005
|
[5] |
CHEN W, CHEN S H, WU X, et al. System identification and control of fast steering mirror based on voice coil actuators[J]. Applied Mechanics and Materials, 2014, 446: 1227-1233.
|
[6] |
SHINSHI T, SHIMIZU D, KODEKI K, et al. A fast steering mirror using a compact magnetic suspension and voice coil motors for observation satellites[J]. Electronics, 2020, 9(12): 11.
|
[7] |
YU H P, LIU Y X, DENG J, et al. A novel piezo-electric stack for rotary motion by d(15) working mode: principle, modeling, simulation, and experiments[J]. IEEE-ASME Trans Mechatron. , 2020, 25(2): 491-501. DOI: 10.1109/TMECH.2020.2965962
|
[8] |
刘昊, 赖磊捷. 二维微动平台柔性机构动力学建模与分析[J]. 上海工程技术大学学报, 2023, 37(2): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ202302011.htm
LIU H, LAI L J. Dynamic modeling and analysis of flexure mechanism in two-dimensional micro motion stage[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ202302011.htm
|
[9] |
CHANG Q B, CHEN W S, LIU J K, et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 2021, 159: 107851. DOI: 10.1016/j.ymssp.2021.107851
|
[10] |
XIANG S, CHEN S, WU X, et al. Study on fast linear scanning for a new laser scanner[J]. Optics and Laser Technology, 2010, 42(1): 42-48. DOI: 10.1016/j.optlastec.2009.04.019
|
[11] |
YUAN G, WANG D H, LI S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sens. Actuator A-Phys. , 2015, 235: 292-299. DOI: 10.1016/j.sna.2015.10.017
|
[12] |
SHAO S B, TIAN Z, SONG S Y, et al. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability[J]. Rev. Sci. Instrum. , 2018, 89(5): 10.
|
[13] |
KIM H S, LEE D H, HUR D J, et al. Development of two-dimensional piezoelectric laser scanner with large steering angle and fast response characteristics[J]. Rev Sci. Instrum. , 2019, 90(6): 9.
|
[14] |
谢永, 刘重飞, 贾建军, 等. 基于位移放大机构的压电快速反射镜设计[J]. 上海交通大学学报, 2021, 55(9): 1142-1150. DOI: 10.3969/j.issn.1674-8115.2021.09.002
XIE Y, LIU C F, JIA J J, et al. Design of fast steering mirror based on displacement amplification mechanism[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1142-1150. DOI: 10.3969/j.issn.1674-8115.2021.09.002
|
[15] |
CHANG Y H, HAO G B, LIU C S. Design and characterization of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization[J]. Sens. Actuator A-Phys. , 2021, 322: 11.
|
[16] |
CSENCSICS E, SITZ B, SCHITTER G. Integration of control design and system operation of a high performance piezo-actuated fast steering mirror[J]. IEEE-ASME Trans. Mechatron. , 2020, 25(1): 239-247. DOI: 10.1109/TMECH.2019.2959087
|
[17] |
罗勇, 刘凯凯, 杨帆, 等. 快反镜系统滑模复合分层干扰观测补偿控制[J]. 光电工程, 2023, 50(4): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202304007.htm
LUO Y, LIU K K, YANG F, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system[J]. Opto-Electronic Engineering, 2023, 50(4): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202304007.htm
|
[18] |
LUO Y, REN W, HUANG Y M, et al. Feedforward control based on error and disturbance observation for the CCD and fiber-optic gyroscope-based mobile optoelectronic tracking system[J]. Electronics, 2018, 7(10): 223.
|
[1] | LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331. |
[2] | ZHENG Kai, LUO Zhitao, ZHANG Hui. Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development[J]. Infrared Technology , 2023, 45(10): 1008-1019. |
[3] | GONG Jiamin, WU Yijie, LIU Fang, ZHANG Yunsheng, LEI Shutao, ZHU Zehao. Image Fusion Algorithm Based on Improved Fuzzy C-means Clustering[J]. Infrared Technology , 2023, 45(8): 849-857. |
[4] | JIN Meixiu, ZHU Shihu, WANG Tong, ZHUANG Feifei. Nondestructive Crack Testing via Infrared Thermal Imaging Using Halogen Lamp Excitation[J]. Infrared Technology , 2022, 44(4): 421-427. |
[5] | ZHANG Qingyu, FAN Yugang, GAO Yang. Defect Detection of Eddy-Current Thermography Based on Single-Scale Retinex and Improved K-means Clustering[J]. Infrared Technology , 2020, 42(10): 1001-1006. |
[6] | KONG Songtao, HUANG Zhen, YANG Jinru. Research Status and Development of Image Processing for Infrared Thermal Image Nondestructive Testing[J]. Infrared Technology , 2019, 41(12): 1133-1140. |
[7] | ZHENG Kai, JIANG Haijun, CHEN Li. Infrared Thermography NDT and Its Development[J]. Infrared Technology , 2018, 40(5): 401-411. |
[8] | Numerical Simulation of Lock-in Thermograpy for Infrared Nondestructive Testing[J]. Infrared Technology , 2013, (2): 119-122. |
[9] | ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016 |
[10] | XIE Xing-sheng, YAN Fang, LU Jia-jia, YE Yu-tang, DENG Jun-jie, WEI Jian-ying, SUN Guo-dong, FANG Liang. The Applications of Thermal Wave NDT in Turbine Blades Testing[J]. Infrared Technology , 2007, 29(9): 552-555. DOI: 10.3969/j.issn.1001-8891.2007.09.015 |
1. |
王茜萌. 基于行为聚类的电子商务恶意支付用户检测. 信息与电脑(理论版). 2023(03): 25-27 .
![]() | |
2. |
杜玉红,张松奇. 基于红外图像的耐腐蚀船舶材料表面缺陷识别研究. 舰船科学技术. 2023(14): 152-155 .
![]() | |
3. |
苗勃. 基于红外图像增强算法的石油储罐内油品温度过高风险自动识别方法. 化工自动化及仪表. 2023(06): 900-904 .
![]() |