Citation: | ZHANG Meng, ZHANG Songlin, WU Yao, YANG Peiji, HE Zhou. Optimization Design and Dynamic Analysis of Flexible Mechanism for Large-Angle Fast Mirror[J]. Infrared Technology , 2024, 46(6): 625-633. |
This study presents the design of a flexible mechanism with a large deflection angle for piezoelectric-driven fast-reflecting mirrors, to address the common issue of small deflection range. First, a study was conducted on the correlation among the nested hierarchy, configuration, natural frequency, and amplification factor of the flexible mechanism. Accordingly, a preliminary plan was developed for the design of a three-stage hybrid configuration. The mechanism was discretized into flexible hinges, rigid bodies, and concentrated masses as basic units. Subsequently, a general dynamic stiffness model was constructed for the flexible mechanism using the matrix displacement method. This model establishes a mapping relationship between the structural parameters of the flexible mechanism and the deflection angle of the fast-reflecting mirror. On this basis, a modal analysis of the flexible mechanism was performed, whereby the key dimensional parameters of the fast-reflecting mirror's flexible mechanism were optimized. Compared to similar research conducted domestically and internationally, this configuration achieves a mechanical deflection angle greater than 100 mrad by ensuring miniaturization and a higher first-order natural frequency.
[1] |
谭淞年, 王福超, 许永森, 等. 航空光电平台两轴快速反射镜结构设计[J]. 光学精密工程, 2022, 30(11): 1344-1352. DOI: 10.37188/OPE.20213000.0757
TAN S N, WANG F C, XU Y S, et al. Structure design of two-axis fast steering mirror for aviation optoelectronic platform[J]. Optics and Precision Engineering, 2022, 30(11): 1344-1352. DOI: 10.37188/OPE.20213000.0757
|
[2] |
朱伟鸿, 汪洋, 王栎皓, 等. 卫星激光通信MEMS快速反射镜可靠性研究进展[J]. 红外与激光工程, 2023, 52(9): 230-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202309024.htm
ZHU W H, WANG Y, WANG L H, et al. Research progress of reliability of MEMS fast steering mirror for satellite laser communication[J]. Infrared and Laser Engineering, 2023, 52(9): 230-242. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202309024.htm
|
[3] |
YOO H W, VAN ROYEN M E, VAN CAPPELLE-N W A, et al. Automated spherical aberration correction in scanning confocal microscopy[J]. Rev Sci. Instrum. , 2014, 85(12): 9.
|
[4] |
WANG K, XIN H, CAO N, et al. Design of two-axis flexible support structure for fast steering mirror in space cameras[J]. Infrared and Laser Engineering, 2019, 48(12): 1214005. DOI: 10.3788/IRLA201948.1214005
|
[5] |
CHEN W, CHEN S H, WU X, et al. System identification and control of fast steering mirror based on voice coil actuators[J]. Applied Mechanics and Materials, 2014, 446: 1227-1233.
|
[6] |
SHINSHI T, SHIMIZU D, KODEKI K, et al. A fast steering mirror using a compact magnetic suspension and voice coil motors for observation satellites[J]. Electronics, 2020, 9(12): 11.
|
[7] |
YU H P, LIU Y X, DENG J, et al. A novel piezo-electric stack for rotary motion by d(15) working mode: principle, modeling, simulation, and experiments[J]. IEEE-ASME Trans Mechatron. , 2020, 25(2): 491-501. DOI: 10.1109/TMECH.2020.2965962
|
[8] |
刘昊, 赖磊捷. 二维微动平台柔性机构动力学建模与分析[J]. 上海工程技术大学学报, 2023, 37(2): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ202302011.htm
LIU H, LAI L J. Dynamic modeling and analysis of flexure mechanism in two-dimensional micro motion stage[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ202302011.htm
|
[9] |
CHANG Q B, CHEN W S, LIU J K, et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 2021, 159: 107851. DOI: 10.1016/j.ymssp.2021.107851
|
[10] |
XIANG S, CHEN S, WU X, et al. Study on fast linear scanning for a new laser scanner[J]. Optics and Laser Technology, 2010, 42(1): 42-48. DOI: 10.1016/j.optlastec.2009.04.019
|
[11] |
YUAN G, WANG D H, LI S D. Single piezoelectric ceramic stack actuator based fast steering mirror with fixed rotation axis and large excursion angle[J]. Sens. Actuator A-Phys. , 2015, 235: 292-299. DOI: 10.1016/j.sna.2015.10.017
|
[12] |
SHAO S B, TIAN Z, SONG S Y, et al. Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability[J]. Rev. Sci. Instrum. , 2018, 89(5): 10.
|
[13] |
KIM H S, LEE D H, HUR D J, et al. Development of two-dimensional piezoelectric laser scanner with large steering angle and fast response characteristics[J]. Rev Sci. Instrum. , 2019, 90(6): 9.
|
[14] |
谢永, 刘重飞, 贾建军, 等. 基于位移放大机构的压电快速反射镜设计[J]. 上海交通大学学报, 2021, 55(9): 1142-1150. DOI: 10.3969/j.issn.1674-8115.2021.09.002
XIE Y, LIU C F, JIA J J, et al. Design of fast steering mirror based on displacement amplification mechanism[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1142-1150. DOI: 10.3969/j.issn.1674-8115.2021.09.002
|
[15] |
CHANG Y H, HAO G B, LIU C S. Design and characterization of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization[J]. Sens. Actuator A-Phys. , 2021, 322: 11.
|
[16] |
CSENCSICS E, SITZ B, SCHITTER G. Integration of control design and system operation of a high performance piezo-actuated fast steering mirror[J]. IEEE-ASME Trans. Mechatron. , 2020, 25(1): 239-247. DOI: 10.1109/TMECH.2019.2959087
|
[17] |
罗勇, 刘凯凯, 杨帆, 等. 快反镜系统滑模复合分层干扰观测补偿控制[J]. 光电工程, 2023, 50(4): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202304007.htm
LUO Y, LIU K K, YANG F, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system[J]. Opto-Electronic Engineering, 2023, 50(4): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202304007.htm
|
[18] |
LUO Y, REN W, HUANG Y M, et al. Feedforward control based on error and disturbance observation for the CCD and fiber-optic gyroscope-based mobile optoelectronic tracking system[J]. Electronics, 2018, 7(10): 223.
|
[1] | DONG Lanxiao, NAN Xueli, LIU Haoyang, DUAN Qikai, DONG Jinfeng. Broadband Terahertz Asymmetric Primary and Secondary Waveguide Directional Coupler Design[J]. Infrared Technology , 2022, 44(9): 986-990. |
[2] | ZHOU Qiangguo, HUANG Zhiming. Review of Research and Application of Terahertz Imaging Technology[J]. Infrared Technology , 2022, 44(4): 328-342. |
[3] | PAN Wu, YAN Yanjun, SHEN Dajun. Performance Analysis of Terahertz Metamaterial Sensor Based on Electromagnetically Induced Transparency[J]. Infrared Technology , 2018, 40(7): 707-711. |
[4] | WU Gang, TANG Libin, HAO Qun, ZHANG Yuping, LI Rujie, PAN Feng, YANG Yanbo, LAU Shuping, HAN Fuzhong. Research Progress in the Uncooled Terahertz Imaging Detection Technology[J]. Infrared Technology , 2018, 40(6): 513-527. |
[5] | HAO Yuan, YU Yue, WANG Qiang, GU Xiaohong. Experimental Analysis of Terahertz Detection of Polyethylene Thickness[J]. Infrared Technology , 2018, 40(2): 183-188. |
[6] | LIU Lingyu, CHANG Tianying, YANG Chuanfa. Detection of the Debonding Defect between a Composite Material and Metal Based on Terahertz Time-Domain Spectroscopy[J]. Infrared Technology , 2018, 40(1): 79-84. |
[7] | LIANG Juan, XU Guoyue, GUO Tengchao, TAN Shujuan, HUANG Jinguo. Study on Key Factor Influencing Compatible Property of Low-Emissivity Coating with Metamaterials[J]. Infrared Technology , 2018, 40(1): 14-19,46. |
[8] | YANG Jingfan, QU Shaobo, PANG Yongqiang, XU Cuilian. Development of THz and Infrared Metamaterial Absorbers[J]. Infrared Technology , 2017, 39(4): 323-328. |
[9] | WANG Liansheng, XIA Dongyan, DING Xueyong, WANG Yuan, HE Yanting. The Design Research of Dual Wideband Polarization-independent Metamaterials Absorber in the THz Band[J]. Infrared Technology , 2016, 38(7): 607-611,621. |
[10] | LIU Yi, PENG Xiao-yu, WANG Zuo-bin, DONG Jia-meng, WEI Dong-shan, CUI Hong-liang, DU Chun-lei. Terahertz-wave Absorber Based on Metamaterial[J]. Infrared Technology , 2015, (9): 756-763. |