XIAO Xiongliang, CHEN Changming. Establishment and Verification of Multivariate Linear Regression Model for Prediction of Ethanol Concentration[J]. Infrared Technology , 2021, 43(12): 1228-1233.
Citation: XIAO Xiongliang, CHEN Changming. Establishment and Verification of Multivariate Linear Regression Model for Prediction of Ethanol Concentration[J]. Infrared Technology , 2021, 43(12): 1228-1233.

Establishment and Verification of Multivariate Linear Regression Model for Prediction of Ethanol Concentration

More Information
  • Received Date: February 06, 2021
  • Revised Date: April 30, 2021
  • A non-dispersive infrared absorption system comprising a light source, gas chamber, detector, and controller is designed, and multi-component gases of different concentrations (including ethanol, carbon dioxide, and water vapor) are injected into the chamber. An infrared spectrometer is used to collect the spectral data, and amulti-component gas mixture spectrum isobtained. A multiple linear regression model is established based on the regression coefficients of the dataset samples, and interference correction is performed to reduce the effect of carbon dioxide and water vapor on the concentration of ethanol. The established multiple linear regression model is evaluated, and the results indicate that the model is reliable and effective with a good linear regression effect. The model can be used to predict the gas concentration, and the prediction errors of ethanol, carbon dioxide, and water vapor concentration are within an acceptable range. The prediction error of ethanol concentration is the minimum, which is less than 2.0×10-4. The interference of carbon dioxide and water vapor can be mostly eliminated through interference correction. Importantly, the ethanol concentration can be predicted more accurately.
  • [1]
    张珅, 王煜, 赵欣, 等. 基于NDIR开放光路CO2浓度测量的标定方法研究[J]. 仪表技术与传感器, 2020(3): 100-104. DOI: 10.3969/j.issn.1002-1841.2020.03.020

    ZHANG Shen, WANG Yu, ZHAO Xin, et al. Research on calibration method of CO2 concentration measurement based on NDIR open optical path[J]. Instrument Technique and Sensor, 2020(3): 100-104. DOI: 10.3969/j.issn.1002-1841.2020.03.020
    [2]
    Muller M, Graf P, Meyer J, et al. Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland[J]. Atmospheric Measurement Techniques, 2020, 13(7): 3815-3834. DOI: 10.5194/amt-13-3815-2020
    [3]
    Dinh T V, Lee J Y, Ahn J W, et al. Development of a wide-range non-dispersive infrared analyzer for the continuous measurement of CO2 in indoor environments[J]. Atmosphere, 2020, 11(10): 1024. DOI: 10.3390/atmos11101024
    [4]
    张施令, 李京伟. 基于NDIR技术的高压组合电器中CF4气体检测方法研究[J]. 高压电器, 2019, 55(7): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201907023.htm

    ZHANG Shiling, LI Jingwei. Research on CF4 gas detection method in GIS gas chamber based on NDIR technology[J]. High Voltage Apparatus, 2019, 55(7): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ201907023.htm
    [5]
    邓波, 庞小锋. 乙醇在静磁场作用下的傅里叶红外光谱研究[J]. 激光与红外, 2008, 38(2): 141-144. DOI: 10.3969/j.issn.1001-5078.2008.02.013

    DENG Bo, PANG Xiaofeng. Study on the infrared spectra of ethanol under action of static magnetic field[J]. Laser & Infrared, 2008, 38(2): 141-144. DOI: 10.3969/j.issn.1001-5078.2008.02.013
    [6]
    GENG H, LIU J G, ZHANG Y J, et al. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2014, 63(4): 043301. DOI: 10.7498/aps.63.043301
    [7]
    GAO H, XIE L, GONG P, et al. Detection of ethanol using a tunable interband cascade laser at 3.345 μm[J]. Photonic Sensors, 2018(8): 303-309. DOI: 10.1007/s13320-018-0471-3
    [8]
    耿辉, 刘建国, 张玉钧, 等. 可调谐半导体激光吸收光谱法测量空气中乙醇蒸气[J]. 光学学报, 2014, 34(8): 315-321. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201408050.htm

    GENG Hui, LIU Jianguo, ZHANG Yujun, et al. Measurement of ethanol vapor in air with tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2014, 34(8): 315-321. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201408050.htm
    [9]
    孙友文, 刘文清, 汪世美, 等. 非分散红外多组分气体检测技术及其在CEMS中的应用[J]. 红外, 2011, 32(5): 23-26. DOI: 10.3969/j.issn.1672-8785.2011.05.005

    SUN Youwen, LIU Wenqing, WANG Shimei, et al. Non-dispersive infrared multi-component gas analysis technology and its application in CEMS[J]. Infrared, 2011, 32(5): 23-26. DOI: 10.3969/j.issn.1672-8785.2011.05.005
    [10]
    凌慧娇, 陶胜康, 林雨倩, 等. 非分散红外法测定烟气中二氧化硫常见问题的探讨[J]. 现代盐化工, 2020(3): 27-28. DOI: 10.3969/j.issn.1005-880X.2020.03.013

    LING Huijiao, TAO Shengkang, LIN Yuqian, et al. Discussion of common problems in analyzing sulfur dioxide by non-dispersive infrared method[J]. Modern Salt and Chemical Industry, 2020(3): 27-28. DOI: 10.3969/j.issn.1005-880X.2020.03.013
    [11]
    Mikuta R, Silinskas M, Bourouis R, et al. Characterization of non-dispersive infrared gas detection system for multi gas applications[J]. Technisches Messen, 2016, 83(7-8): 410-416. DOI: 10.1515/teme-2015-0010
    [12]
    WU Y Z, SHI Z H. The design of the test chamber that offers environmental conditions to detect non-dispersive infrared gas concentration[J]. Applied Mechanics and Materials, 2014(602-605): 2285-2289. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.841.2328&rep=rep1&type=pdf
  • Related Articles

    [1]JIN Dan, LIU Xiaoguang, SHI Gang, SONG Renping, ZU Mingxia. Temperature Compensation for Infrared Detection of Carbon Dioxide Concentration[J]. Infrared Technology , 2023, 45(6): 671-677.
    [2]LI Wenjie, YAN Shiqiang, SONG Chang, WU Yahong, WANG Chengliang, OU YANG Yan. Radiation Interference Characteristics of Sub-pixel Fire Points on Infrared Early Warning Satellite[J]. Infrared Technology , 2021, 43(1): 73-78.
    [3]WANG Dongjing, ZHANG Baohui, CHEN Hongyuan, WANG Runyu, WU Jie, WU Xudong. Moving-target Detection Algorithm Adapting Complex Background Interference[J]. Infrared Technology , 2017, 39(11): 1024-1031.
    [4]Study on Performance Computing and Simulation of Infrared Imaging System under Light Interference[J]. Infrared Technology , 2015, (2): 110-113.
    [5]PAN Zhuo-jin, GE Zhong-hua, MAO Yan-e. The Research on Antijamming Methods of Counter-Infrared-Interference Based on Impulse Value Sequence Algorithm[J]. Infrared Technology , 2014, (1): 42-46,62.
    [6]ZHANG Wen-fang, HU Bo, ZHANG Gui-yong, HAN Shu-jian. Interference Effectiveness Analysis of Infrared Imaging System Influenced by Foam[J]. Infrared Technology , 2012, 34(3): 164-167,172. DOI: 10.3969/j.issn.1001-8891.2012.03.008
    [7]LIU Ben-li, WANG Hong-xia, ZHU You-zhang, SONG Zi-biao, WU Wei. Research on Infrared Interference Characteristics of Carbon Black Smoke Screen[J]. Infrared Technology , 2010, 32(8): 483-486. DOI: 10.3969/j.issn.1001-8891.2010.08.012
    [8]ZHOU Ming-shan, XU Ming, LI Cheng-jun, CHEN Zuo-ru, LI Jun-you. Preparation and Extinction Capability of Infrared Interference Agent[J]. Infrared Technology , 2006, 28(12): 726-729. DOI: 10.3969/j.issn.1001-8891.2006.12.011
    [9]LIU Ze-long, GUO Jian-guang, MIAO Yun-kun, ZHENG Wei-ping. Compare the Interference Performance of Several Burnable Organic Smoke Screens to IR[J]. Infrared Technology , 2006, 28(2): 116-119. DOI: 10.3969/j.issn.1001-8891.2006.02.015
    [10]The Research on Hot Window Interference of Dual Spectrums Homing head[J]. Infrared Technology , 2003, 25(1): 47-50. DOI: 10.3969/j.issn.1001-8891.2003.01.011

Catalog

    Article views (135) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return