WANG Luxiang, ZHANG Zhijie, WANG Quan, CHEN Haoze. Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering[J]. Infrared Technology , 2022, 44(11): 1220-1227.
Citation: WANG Luxiang, ZHANG Zhijie, WANG Quan, CHEN Haoze. Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering[J]. Infrared Technology , 2022, 44(11): 1220-1227.

Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering

More Information
  • Received Date: May 19, 2022
  • Revised Date: July 19, 2022
  • Infrared thermal imaging technology is often used to detect internal defects in carbon-fiber-reinforced polymers; however, commonly used optical heat sources are inefficient and require the specimen to be heated over a short distance. Lasers offer the advantages of energy concentration and low-energy attenuation. As a heating source, it helps achieve long-distance nondestructive testing (NDT). This paper introduces the technology of line laser scanning infrared thermal imaging and analyzes the thermal transmission process inside the material during the heating process. Second, the uniformity and contrast of the infrared image are poor, which is not conducive to defect-feature extraction. Here, image segmentation methods were based on the intuitionistic fuzzy C-means (IFCM) clustering algorithm to extract defect edges. Compared with the K-means clustering method, this method can improve the recognition and detection of fuzzy edges of defects, retain more detailed information of images, and help extract the features of the defect edges accurately.
  • [1]
    张晓虎, 孟宇, 张炜. 碳纤维增强复合材料技术发展现状及趋势[J]. 纤维复合材料, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htm

    ZHANG Xiaohu, MENG Yu, ZHANG Wei. The state of the art and trend of carbon fiber reinforced polymer[J]. Fiber Composite, 2004(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC200401015.htm
    [2]
    王扬, 李科, 刘俊岩. CFRP复合材料层板缺陷的红外热波成像检测方法[J]. 航空制造技术, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htm

    WANG Yang, LI Ke, LIU Junyan. Defect detection method of CFRP composite lamina-tes by infrared thermal wave imaging[J]. Aeronautical Manufacturing Technology, 2016(4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201604008.htm
    [3]
    李晓丽, 金万平, 张存林, 等. 红外热波无损检测技术应用与进展[J]. 无损检测, 2015(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201506005.htm

    LI Xiaoli, JIN Wanping, ZHANG Cunlin, et al. The application and progress of infrared thermal wave nondestructive detection technology[J]. Nondestructive Testing, 2015(6): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201506005.htm
    [4]
    杨晓. 基于红外热波技术的大尺寸复合材料缺陷检测研究[D]. 成都: 电子科技大学, 2021.

    YANG Xiao. A Research On Defect Detection of Large-Scale Composite Materials Based on infrared Thermal Wave Technology[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
    [5]
    朱笑, 袁丽华. 基于红外热成像的碳纤维增强树脂复合材料低速冲击损伤表征[J]. 复合材料学报, 2022, 39(8): 4164-4171.

    ZHU X, YUAN L H. Low-velocity impact damage characterization of CFRP based on infrared thermography[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4164-4171.
    [6]
    FENG Q Z, GAO B, LU P, et al. Automatic seeded region growing for thermo-graphy debonding detection of CFRP[J]. NDT & E International, 2018, 99: 36-49.
    [7]
    Sreeshan K, Dinesh R, Renji K. Enhancement of thermographic images of composite laminates for debond detection: an approach based on Gabor filter and watershed[J]. NDT & E International, 2019, 103: 68-76.
    [8]
    Ogasawara N, Ban A, Yamada H, Kojima R. Paint delamination inspection for light buoys by infrared thermography with distance heating[J]. Adv. Experim. Mech. , 2016(1): 167-172.
    [9]
    Masashi Ishikawa, Masaki Ando, Masashi Koyama, et al. Active thermographic inspection of carbon fiber reinforced plastic laminates using laser scanning heating[J]. Composite Structures, 2019, 209: 515-522.
    [10]
    丁超. 碳纤维材料红外热波无损检测技术研究[D]. 北京: 中国科学院大学, 2021.

    DING Chao. Research on Infrared Thermal Wave Nondestructive Testing Technology of Carbon Fiber Materials [D]. Beijing: University of Chinese Academy of Sciences, 2021.
    [11]
    汪权, 张志杰, 陈昊泽, 等. 线激光扫描的碳纤维复合材料表面损伤研究[J]. 激光与红外, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htm

    WANG Quan, ZHANG Zhijie, CHEN Haoze, et al. Study on surface damage of carbon fiber composites based on line laser scanning[J]. Laser & Infrared, 2022, 52(3): 458-464. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202203023.htm
    [12]
    梅晨. 热障涂层结构缺陷脉冲红外热波无损检测技术研究[D]. 哈尔滨: 黑龙江科技大学, 2016.

    MEI Chen. Research on the Technology of Thermal Barrier Coating Structure Defects Detection Using Pulsed Infrared Thermal Wave Non-Destructive Testing Method[D]. Harbin: Heilongjiang University of Science and Technology, 2016.
    [13]
    孙长友. 工程扫描仪滑架部件力学特性和热特性分析[D]. 西安: 西安电子科技大学, 2008.

    SUN Changyou. Analysis of Mechanics Characteristic and Thermal Characteristic of Engineering Scanner's Carriage Part[D]. Xi'an: Xidian University, 2008.
    [14]
    GUO X W, XU W H. Comparative study on pulsed thermography and modulated thermography of composite honeycomb panels[J]. Acta Materiae Compositae Sinica, 2012, 29(2): 172-179.
    [15]
    Fiat A, Shamir A. How to prove yourself: practical solution to identification and signature problems[C]//Advances in Cryptology-CRYPTO, 1987: 186-194.
  • Related Articles

    [1]LI Xianjing, HAO Zhenghui. Infrared Thermal Imaging Smoke Detection Based on Motion and Fuzzy Features[J]. Infrared Technology , 2024, 46(3): 325-331.
    [2]ZHENG Kai, LUO Zhitao, ZHANG Hui. Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development[J]. Infrared Technology , 2023, 45(10): 1008-1019.
    [3]GONG Jiamin, WU Yijie, LIU Fang, ZHANG Yunsheng, LEI Shutao, ZHU Zehao. Image Fusion Algorithm Based on Improved Fuzzy C-means Clustering[J]. Infrared Technology , 2023, 45(8): 849-857.
    [4]JIN Meixiu, ZHU Shihu, WANG Tong, ZHUANG Feifei. Nondestructive Crack Testing via Infrared Thermal Imaging Using Halogen Lamp Excitation[J]. Infrared Technology , 2022, 44(4): 421-427.
    [5]ZHANG Qingyu, FAN Yugang, GAO Yang. Defect Detection of Eddy-Current Thermography Based on Single-Scale Retinex and Improved K-means Clustering[J]. Infrared Technology , 2020, 42(10): 1001-1006.
    [6]KONG Songtao, HUANG Zhen, YANG Jinru. Research Status and Development of Image Processing for Infrared Thermal Image Nondestructive Testing[J]. Infrared Technology , 2019, 41(12): 1133-1140.
    [7]ZHENG Kai, JIANG Haijun, CHEN Li. Infrared Thermography NDT and Its Development[J]. Infrared Technology , 2018, 40(5): 401-411.
    [8]Numerical Simulation of Lock-in Thermograpy for Infrared Nondestructive Testing[J]. Infrared Technology , 2013, (2): 119-122.
    [9]ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016
    [10]XIE Xing-sheng, YAN Fang, LU Jia-jia, YE Yu-tang, DENG Jun-jie, WEI Jian-ying, SUN Guo-dong, FANG Liang. The Applications of Thermal Wave NDT in Turbine Blades Testing[J]. Infrared Technology , 2007, 29(9): 552-555. DOI: 10.3969/j.issn.1001-8891.2007.09.015
  • Cited by

    Periodical cited type(3)

    1. 王茜萌. 基于行为聚类的电子商务恶意支付用户检测. 信息与电脑(理论版). 2023(03): 25-27 .
    2. 杜玉红,张松奇. 基于红外图像的耐腐蚀船舶材料表面缺陷识别研究. 舰船科学技术. 2023(14): 152-155 .
    3. 苗勃. 基于红外图像增强算法的石油储罐内油品温度过高风险自动识别方法. 化工自动化及仪表. 2023(06): 900-904 .

    Other cited types(10)

Catalog

    Article views (121) PDF downloads (24) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return