HUANG Jun, ZHANG Nana, ZHANG Hui. Silent Live Face Detection in Near-Infrared Images Based on Optimized LeNet-5[J]. Infrared Technology , 2021, 43(9): 845-851.
Citation: HUANG Jun, ZHANG Nana, ZHANG Hui. Silent Live Face Detection in Near-Infrared Images Based on Optimized LeNet-5[J]. Infrared Technology , 2021, 43(9): 845-851.

Silent Live Face Detection in Near-Infrared Images Based on Optimized LeNet-5

More Information
  • Received Date: November 30, 2020
  • Revised Date: January 19, 2021
  • An improved method of silent liveness detection for LeNet-5 and near-infrared images is proposed to overcome the problem of the interactive liveness detection process and poor user experience. First, a face attack dataset was constructed using a near-infrared camera. Second, the LeNet-5 was optimized by increasing the number of convolution kernels and introducing global average pooling to construct a deep convolutional neural network. Finally, the near-infrared face image is input to the model to realize silent liveness detection. The experimental results show that the proposed model has a higher recognition rate for the liveness detection dataset, reaching 99.95%. The running speed of the silent liveness detection system is approximately 18-22 frames per second, which shows high robustness in practical applications.
  • [1]
    Singh A K, Joshi P, Nandi G C. Face recognition with liveness detection using eye and mouth movement[C]//Proceedings of the 2014 International Conference on Signal Propagation and Computer Technology (ICSPCT), IEEE, 2014: 592-597.
    [2]
    张进, 张娜娜. 优化特征提取的互动式人脸活体检测研究[J]. 计算机工程与应用, 2019, 55(13): 193-200. DOI: 10.3778/j.issn.1002-8331.1804-0227

    ZHANG Jin, ZHANG Nana. Research on Interactive Face Detection Based on Optimized Feature Extraction[J]. Computer Engineering and Applications, 2019, 55(13): 193-200. DOI: 10.3778/j.issn.1002-8331.1804-0227
    [3]
    V David, A Sanchez. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1/2): 5-20. http://www.onacademic.com/detail/journal_1000035125251010_2624.html
    [4]
    Ng E S, Chia Y S. Face verification using temporal affective cues[C]// Proceedings of the 21st International Conference on Pattern Recognition, Piscataway, 2012: 1249-1252.
    [5]
    马钰锡, 谭励, 董旭, 等. 面向VTM的交互式活体检测算法[J]. 计算机工程, 2019, 45(3): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201903043.htm

    MAYuxi, TAN Li, DONG Xu, et al. Interactive Liveness Detection Algorithm for VTM[J]. Computer Engineering, 2019, 45(3): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201903043.htm
    [6]
    Lecun Y, Bottou L. Gradient-based learning applied to document recognition[C]//Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    [7]
    李文宽, 刘培玉, 朱振方, 等. 基于卷积神经网络和贝叶斯分类器的句子分类模型[J]. 计算机应用研究, 2020, 37(2): 333-336, 341. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202002003.htm

    LI Wenkuan, LIU Peiyu, ZHU Zhenfang, et al. Sentence classification model based on convolution neural network and Bayesian classifier[J]. Application Research of Computers, 2020, 37(2): 333-336, 341. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202002003.htm
    [8]
    程淑红, 周斌. 基于改进CNN的铝轮毂背腔字符识别[J]. 计算机工程, 2019, 45(5): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201905029.htm

    CHENG Shuhong, ZHOU Bing. Recognition of Characters in Aluminum Wheel Back Cavity Based on Improved Convolution Neural Network[J]. Computer Engineering, 2019, 45(5): 182-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201905029.htm
    [9]
    LIN M, CHEN Q, YAN S. Network In Network[EB/OL]. [2014-03-04]. https://arxiv.org/pdf/1312.4400.pdf.
    [10]
    ZHANG B, ZHANG L, ZHANG D, et al. Directional binary code with application to PolyU near-infrared face database[J]. Pattern Recognition Letters, 2010, 31(14): 2337-2344. DOI: 10.1016/j.patrec.2010.07.006
    [11]
    ZHANG K, ZHANG Z, LI Z, et al. Joint Face detection and alignment using multitask cascaded Convolutional Networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. DOI: 10.1109/LSP.2016.2603342
    [12]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2014-12-22]. https://arxiv.org/pdf/1412.6980v8.pdf.
    [13]
    Määttä J, Hadid A, Pietikäinen M. Face spoofing detection from single images using micro-texture analysis[C]//Proceedings of the International Joint Conference on Biometrics, IEEE, 2011: 1-7.
    [14]
    邓茜文, 冯子亮, 邱晨鹏. 基于近红外与可见光双目视觉的活体人脸检测方法[J]. 计算机应用, 2020, 40(7): 2096-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202007038.htm

    DENG Qianwen, FENG Ziliang, QIU Pengchen. Face liveness detection method based on near-infrared and visible binocular vision[J]. Journal of Computer Applications, 2020, 40(7): 2096-2103. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202007038.htm
    [15]
    龙敏, 佟越洋. 应用卷积神经网络的人脸活体检测算法研究[J]. 计算机科学与探索, 2018, 12(10): 1658-1670. DOI: 10.3778/j.issn.1673-9418.1801009

    LONG Min, TONG Yueyang. Research on Face Liveness Detection Algorithm Using Convolutional Neural Network[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(10): 1658-1670. DOI: 10.3778/j.issn.1673-9418.1801009
  • Related Articles

    [1]DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470.
    [2]CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.
    [3]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [4]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [5]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [6]ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
    [7]HE Qian, LIU Boyun. Review of Infrared Image Edge Detection Algorithms[J]. Infrared Technology , 2021, 43(3): 199-207.
    [8]FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.
    [9]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [10]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
  • Cited by

    Periodical cited type(4)

    1. 陈秋菊,彭天昊,康万杰,何国锋. 特征融合的电力机械设备过热故障红外检测. 机械设计与制造. 2024(04): 337-341 .
    2. 尚华胜,甘淑,袁希平,朱智富,李绕波. 级联语义分割和边缘检测的GF-2影像耕地提取. 遥感信息. 2024(04): 134-143 .
    3. 刘志东. 改进神经网络的船舶红外图像边缘检测方法. 舰船科学技术. 2023(07): 166-169 .
    4. 浦莹开,张笃振. 一种细化边缘的轻量级边缘检测神经网络. 计算机应用研究. 2023(11): 3485-3489 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return