QIAO Zhiping, HUANG Jingying, WANG Lihe. Infrared Dual-band Target Detecting Fusion Algorithm Based on Multiple Features[J]. Infrared Technology , 2024, 46(10): 1201-1208.
Citation: QIAO Zhiping, HUANG Jingying, WANG Lihe. Infrared Dual-band Target Detecting Fusion Algorithm Based on Multiple Features[J]. Infrared Technology , 2024, 46(10): 1201-1208.

Infrared Dual-band Target Detecting Fusion Algorithm Based on Multiple Features

More Information
  • Received Date: September 11, 2023
  • Revised Date: October 02, 2024
  • Infrared target detection algorithms play important roles in the military and civilian fields and have been widely studied. However, relatively few studies have been conducted on the use of dual-band images for targeted detection. To fully utilize the advantages of dual-band images in target detection, a fusion algorithm based on multiple features of infrared dual-band images was proposed through an in-depth analysis of the detection results. The proposed fusion algorithm utilizes a deep learning-based multi-feature fusion network to process the detection results of dual-band images, fully mine the feature information of the target, adaptively select the detection results of a single band as the output, and obtain the final decision-level fusion detection results. The experimental results show that, compared with using single-band images for object detection, the proposed infrared dual-band fusion algorithm based on multiple features can effectively utilize information from different bands, improve the detection performance, and fully leverage the advantages of infrared object detection equipment.

  • [1]
    吴双忱, 左峥嵘. 基于深度卷积神经网络的红外小目标检测[J]. 红外与毫米波学报, 2019, 38(3): 371-380.

    WU Shuangchen, ZUO Zhengrong. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380.
    [2]
    汪洋, 郑亲波, 张钧屏. 基于数学形态学的红外图像小目标检测[J]. 红外与激光工程, 2003, 32(1): 28-31.

    WANG Yang, ZHENG Qinbo, ZHANG Junping. Real-time detection of small target in IR grey image based on mathematical morphology[J]. Infrared and Laser Engineering, 2003, 32(1): 28-31.
    [3]
    张毅刚, 曹阳, 项学智. 基于形态学Top-hat滤波的红外小目标检测[J]. 计算机测量与控制, 2011, 19(6): 1269-1272.

    ZHANG Yigang, CAO Yang, XIANG Xuezhi. Infrared small target detection based on morphological top-hat filtering[J]. Computer Measurement & Control, 2011, 19(6): 1269-1272.
    [4]
    熊辉, 沈振康, 魏急波, 等. 低信噪比运动红外点目标的检测[J]. 电子学报, 1999(12): 26-29. DOI: 10.3321/j.issn:0372-2112.1999.12.008

    XIONG Hui, SHEN Zhenkang, WEI Jibo, et al. Moving infrared low SNR target detection algorithm[J]. Chinese Journal of Electronics, 1999(12): 26-29. DOI: 10.3321/j.issn:0372-2112.1999.12.008
    [5]
    熊艳, 彭嘉雄, 丁明跃, 等. 基于线性变系数差分方程的运动目标检测方法[J]. 自动化学报, 1996, 22(4): 485-488.

    XIONG Yan, PENG Jiaxiong, DING Mingyue, et al. A method based on linear-variant-coefficient-difference-equation for moving target identi-fication[J]. Acta Automatica Sinica, 1996, 22(4): 485-488.
    [6]
    王春歆, 张玉叶, 王学伟, 等. 空间小目标动态规划检测[J]. 光学精密工程, 2010, 18(2): 477-484.

    WANG Chunxin, ZHANG Yuye, WANG Xuewei, et al. Study on dynamic programming algorithm for space small targets detection[J]. Optics and Precision Engineering, 2010, 18(2): 477-484.
    [7]
    ZHAO B, WANG C, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4481-4492.
    [8]
    DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[C]//IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824.
    [9]
    白玉, 侯志强, 刘晓义, 等. 基于可见光图像和红外图像决策级融合的目标检测算法[J]. 空军工程大学学报, 2020, 21(6): 53-59.

    BAI Yu, HOU Zhiqiang, LIU Xiaoyi, et al. An object detection algorithm based on decision level fusion of visible light image and infrared image[J]. Journal of Air Force Engineering University, 2020, 21(6): 53-59.
  • Related Articles

    [1]YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
    [2]CAO Yutong, HUAN Kewei, XUE Chao, HAN Fengdi, LI Xiangyang, CHEN Xiao. Infrared and Visible Image Fusion Based on CNN with NSCT[J]. Infrared Technology , 2023, 45(4): 378-385.
    [3]WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology , 2021, 43(8): 757-765.
    [4]LIN Li, LIU Xin, ZHU Junzhen, FENG Fuzhou. Classification of Ultrasonic Infrared Thermal Images Using a Convolutional Neural Network[J]. Infrared Technology , 2021, 43(5): 496-501.
    [5]CHEN Gao, WANG Weihua, LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology , 2021, 43(4): 342-348.
    [6]DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, YU Wen. Infrared and Visible Image Fusion Based on Convolutional Neural Network[J]. Infrared Technology , 2020, 42(7): 660-669.
    [7]LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.
    [8]WANG Wei, LI Qing, SUN Yeqing, ZHONG Haijian, XIA Xinhua. Inner Crack Identification on Car Tanks Using Thermal Imaging Based on Convolutional Neural Network[J]. Infrared Technology , 2018, 40(12): 1198-1205.
    [9]MIN Zhaoyang, ZHAO Wenjie. A Target Tracking Algorithm Combining Convolution Neural Network with Spatio Temporal Context[J]. Infrared Technology , 2017, 39(8): 740-745.
    [10]WANG Chen, TANG Xinyi, GAO Sili. Infrared Scene Understanding Algorithm Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2017, 39(8): 728-733.
  • Cited by

    Periodical cited type(12)

    1. 邱祥彪,杨晓明,孙建宁,王健,丛晓庆,金戈,曾进能,张正君,潘凯,陈晓倩. 高空间分辨微通道板现状及发展. 红外技术. 2024(04): 460-466 . 本站查看
    2. 刘宇,时荔蕙. 像增强器性能梯次及发展路线研究. 红外与毫米波学报. 2023(04): 427-433 .
    3. 曾进能,杨琼连,龚燕妮,李廷涛,王乙瑾,李晓露,赵恒,马怀超,徐传平,吴艳娟,汪云,李耀斌,须恃瑜,刘倍宏,徐鳕娇,李荣喜. 超二代微光像增强器性能随工作时间的影响研究. 红外技术. 2023(08): 869-875 . 本站查看
    4. 孙磊,金东东,纪春恒,裴崇雷,安鸿波,段恩悦. 基于增强型CCD探测器的距离选通三维成像不均匀性补偿方法. 兵工学报. 2023(08): 2495-2502 .
    5. 李亚情,左加宁,李晓露,周盛涛,褚祝军,杜培德,王光凡. 自动门控像增强器温度补偿技术研究. 红外技术. 2023(10): 1126-1131 . 本站查看
    6. 李晓峰,常乐,刘倍宏,须恃瑜,丁易冰. 超二代像增强器分辨力随输入照度变化研究. 红外技术. 2022(04): 377-382 . 本站查看
    7. 李亚情,周盛涛,王光凡,褚祝军,杜培德,朱文锦,李晓露,左加宁,朱世聪. 普通高压电源超二代微光像增强器亮度增益温度特性研究. 红外技术. 2022(08): 804-810 . 本站查看
    8. 李晓峰,何雁彬,常乐,王光凡,徐传平. 超二代与三代像增强器性能的比较研究. 红外技术. 2022(08): 764-777 . 本站查看
    9. 张益军. 半导体光电阴极的研究进展. 红外技术. 2022(08): 778-791 . 本站查看
    10. 邱祥彪,闵信杰,金戈,孙建宁,王健,丛晓庆,张正君,徐昭,潘凯,任玲,张振,乔芳建,聂慧君,黄国瑞,陈晓倩,胡泽训,林焱剑,刘丹,杨晓明. 采用干法刻蚀进行微通道板扩口理论模型研究. 红外技术. 2022(08): 818-823 . 本站查看
    11. 孙磊,金东东,纪春恒,裴崇雷,安鸿波. 基于抛物线包络反演的距离选通三维成像方法. 兵工学报. 2022(08): 1868-1873 .
    12. 杨武丽,来悦颖,张晓辉,焦岗成,李世龙,郭欣,贾甜甜. 微光像增强器常用荧光粉性能研究. 应用光学. 2022(06): 1207-1216 .

    Other cited types(4)

Catalog

    Article views (94) PDF downloads (53) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return