Citation: | YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11. |
[1] |
Veselago V G. The electrodynamics of substance with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10: 509-514. DOI: 10.1070/PU1968v010n04ABEH003699
|
[2] |
Pendry J B. Negative refraction index makes perfect lens[J]. Phys. Rev. Lett. , 2000, 85: 3966-3969. DOI: 10.1103/PhysRevLett.85.3966
|
[3] |
Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4184-4187. DOI: 10.1103/PhysRevLett.84.4184
|
[4] |
罗先刚. 亚波长电磁学(上册)[M]. 北京: 科学出版社, 2017: 197-232.
LUO Xiangang. Subwavelength Eectromagnetism (Volume 1)[M]. Beijing: Science Press, 2017: 197-232.
|
[5] |
李荣真. 基于超表面结构的等离子体偏振器件的研究[D]. 合肥: 合肥工业大学, 2016.
LI Rongzhen. Study of Plasma Polarization Devices Based on Metasurface Structures[D]. Hefei: Hefei University of Technology, 2016.
|
[6] |
YU N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. American Association for the Advancement of Science, 2011, 6054: 333-337.
|
[7] |
CHEN Houtong, Antoinette J Taylor, YU Nanfang. A review of metasurfaces: physics and applications[J/OL]. Optics, 2017, https://arxiv.org/abs/1605.07672
.
|
[8] |
YU Nanfang, Federico Capasso. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150. DOI: 10.1038/nmat3839
|
[9] |
Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. Doi: 10.1021/nl300204s.
|
[10] |
Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. DOI: 10.1364/OL.27.001141
|
[11] |
Peifer C, Grhic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett. , 2013(110): 197401.
|
[12] |
LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201-594201.
|
[13] |
PU Mingbo, HU Chenggang, WANG Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. DOI: 10.1364/OE.19.017413
|
[14] |
彭华新, 周济, 崔铁军, 等. 超材料[M]. 北京: 中国铁道出版社, 2020.
PENG Huaxin, ZHOU Ji, CUI Tiejun, et al. Metamaterial[M]. Beijing: China Railway Press, 2020.
|
[15] |
Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Publishing Group, 2014, 8(12): 889-898.
|
[16] |
Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. DOI: 10.1021/nl302516v
|
[17] |
LIN D, FAN P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. DOI: 10.1126/science.1253213
|
[18] |
Khorasaninejad M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. DOI: 10.1021/acs.nanolett.6b05137
|
[19] |
CHEN K, FENG Y, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422. DOI: 10.1002/adma.201606422
|
[20] |
ZHENG G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. DOI: 10.1038/nnano.2015.2
|
[21] |
LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. DOI: 10.1039/C7NR07154J
|
[22] |
NI Xingjie, Alexander V Kildishev, Vladimir M Shalaev. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. DOI: 10.1038/ncomms3807
|
[23] |
Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for Terahertz focusing[J]. Sci. Rep. , 2015, 5: 7738. DOI: 10.1038/srep07738
|
[24] |
Yuk T I, CHEUNG S W, ZHU H L. Mechanically pattern reconfigurable antenna using metasurface[J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1331-1336.
|
[25] |
ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891-2898. DOI: 10.1109/TAP.2014.2310209
|
[26] |
NI C, CHEN M, ZHANG Z, et al. Design of frequency and polarization reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.
|
[27] |
WAN X, ZHANG L, JIA S L, et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434. DOI: 10.1109/TAP.2017.2722829
|
[28] |
CAI H, CHEN S, ZOU C, et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves[J]. Adv. Opt. Mater. , 2018, 6(14): 1800257. DOI: 10.1002/adom.201800257
|
[29] |
Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. Experimental demonstration of ultrafast thz modulation in a graphene-based thin film absorber through negative photoinduced conductivity[J]. ACS Author Choice, 2019, 6(3): 720-727.
|
[30] |
ZHAO X, WANG Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. Acs Photonics, 2019, 6(4): 830-837. DOI: 10.1021/acsphotonics.8b01644
|
[31] |
CONG L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 2020, 32(28): 2001418. DOI: 10.1002/adma.202001418
|
[32] |
Mousavi S H, Khanikaev A B, Neuner B, et al. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs[J]. Optics Express, 2011, 19(22): 22142-22155. DOI: 10.1364/OE.19.022142
|
[33] |
ZHANG J, MEI Z, ZHANG W, et al. An ultrathin directional carpet cloak based on generalized snell's law[J]. Applied Physics Letters, 2013, 103(15): 1780.
|
[34] |
LIU S, XU H X, ZHANG H C, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. DOI: 10.1364/OE.22.013403
|
[35] |
NI Xingjie, WONG Zijing, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. DOI: 10.1126/science.aac9411
|
[36] |
TAN X, ZHANG H, LI J, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245. DOI: 10.1038/s41467-020-19085-1
|
[37] |
苏君红. 红外材料与探测技术[M]. 杭州: 浙江科学技术出版社, 2015.
SU Junhong. Infrared Materials and Detection Technology[M]. Hangzhou: Zhejiang Science and Technology Press, 2015.
|
[38] |
Dereniak L Eustace. Infrared Detectors and Systems[M]. Hoboken: Wiley, 1996.
|
[39] |
邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 13.
DENG Honglang, ZHOU Shaolin, CEN Guanting. Progress in infrared and THz electromagnetic absorption metasurface[J]. Photoelectric Engineering, 2019, 46(8): 13.
|
[40] |
徐天宇. 微纳结构超表面增强吸收研究[D]. 长春: 长春理工大学, 2019.
XU Tianyu. Ultrasurface-Enhanced Absorption Study of Micro-Nano Structures[D]. Changchun: Changchun University of Science and Technology, 2019.
|
[41] |
Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
|
[42] |
Smith E M, Nath J, Ginn J, et al. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers[C]// SPIE Defense + Security, 2016, Doi: 10.1117/12.2223954.
|
[43] |
LI Q, YU B Q, LI Z F. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application[J]. Chinese Physics B, 2017(8): 269-274.
|
[44] |
JUNG J Y, SONG K, Choi J H, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer[J]. Scientific Reports, 2017, 7(1): 430. DOI: 10.1038/s41598-017-00586-x
|
[45] |
Alkorjia O, Abdullah A, Koppula A. Metasurface based uncooled microbolometer with high fill factor[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, XXXIII, 2019: 2126-2129.
|
[46] |
Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731. DOI: 10.1038/s41598-020-66476-x
|
[47] |
Joseph J Talghader, Anand S Gawarikar, Ryan P Shea. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.
|
[48] |
Thomas Maier, Hubert Brückl. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
|
[49] |
Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22): 3766-3768. DOI: 10.1364/OL.35.003766
|
[50] |
Kim H, Neikirk D P, Andresen B F, et al. Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 19.
|
[51] |
JUNG J Y, LEE J, CHOI D G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection[J]. IEEE Photonics Journal, 2015, 7(6): 1-11.
|
[52] |
DU K, LI Q, ZHANG W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.
|
[53] |
LIU Tao, QU Chuang, Mahmoud Almasri, et al. Design and analysis of frequency-selective surface enabled microbolometers[C]//Infrared Technology and Applications XLII. SPIE, 2016, 9819: 487-494.
|
[54] |
LIU T, Abdullah A A, Alkorjia O, et al. Device architecture for metasurface integrated Uncooled SixGeyO1-x-y Infrared Microbolometers (Conference Presentation)[C]// Infrared Technology and Applications XLV, 2019, 11002: 372-378.
|
[55] |
Creazzo T A, Zablocki M J, Zaman L, et al. Frequency selective infrared optical filters for micro-bolometers [C]// SPIE Defense + Security, 2017, 10194: 611-618.
|
[56] |
Gallacher K, Millar R W, Giliberti V, et al. Mid-infrared n-Ge on Si plasmonic based microbolometer sensors[C]//IEEE International Conference on Group IV Photonics, 2017: 3-4.
|
[57] |
DAO T D, Doan A T, Ishii S, et al. MEMS-based wavelength-selective bolometers[J]. Micromachines, 2019, 10(6): 416. DOI: 10.3390/mi10060416
|
[58] |
JIANG S, LI J, LI J, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Optics Express, 2022, 30(6): 9065-9087. DOI: 10.1364/OE.452981
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96. |
[3] | LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333. |
[4] | YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292. |
[5] | GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005. |
[6] | WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801. |
[7] | GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51. |
[8] | SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197. |
[9] | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[10] | HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153. |
1. |
李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
![]() | |
2. |
周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
![]() | |
3. |
兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
![]() | |
4. |
任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
![]() | |
5. |
温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
![]() | |
6. |
侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
![]() | |
7. |
杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
![]() | |
8. |
吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
![]() | |
9. |
李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
![]() | |
10. |
陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
![]() | |
11. |
曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
![]() | |
12. |
吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
![]() | |
13. |
李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
![]() | |
14. |
潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
![]() | |
15. |
张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
![]() | |
16. |
范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
![]() | |
17. |
白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
![]() | |
18. |
邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
![]() | |
19. |
王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
![]() | |
20. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 .
![]() | |
21. |
李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
![]() | |
22. |
艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
![]() | |
23. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 .
![]() | |
24. |
孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
![]() | |
25. |
李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .
![]() |