YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.
Citation: YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.

Application of Metasurfaces in Microbolometers

More Information
  • Received Date: December 03, 2022
  • Revised Date: February 14, 2023
  • Metasurfaces have overcome the electromagnetic limitations of traditional natural materials and solved the bottlenecks of difficult processing and implementation of three-dimensional metamaterials, leading devices to continuously develop towards integration, miniaturization, low cost, and tunability. Metasurfaces are widely used in many fields and are increasingly valued in the field of detectors. Through unique material and structural designs, metasurfaces can effectively achieve precise control of various electromagnetic wave characteristics. Through the integration of metasurfaces, microbolometers are more likely to enhance light absorption and improve the device band selection. This article elaborates on the research on metasurfaces and their applications in microbolometers, demonstrating the development trend and broad prospects of metasurfaces in this field.
  • [1]
    Veselago V G. The electrodynamics of substance with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10: 509-514. DOI: 10.1070/PU1968v010n04ABEH003699
    [2]
    Pendry J B. Negative refraction index makes perfect lens[J]. Phys. Rev. Lett. , 2000, 85: 3966-3969. DOI: 10.1103/PhysRevLett.85.3966
    [3]
    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4184-4187. DOI: 10.1103/PhysRevLett.84.4184
    [4]
    罗先刚. 亚波长电磁学(上册)[M]. 北京: 科学出版社, 2017: 197-232.

    LUO Xiangang. Subwavelength Eectromagnetism (Volume 1)[M]. Beijing: Science Press, 2017: 197-232.
    [5]
    李荣真. 基于超表面结构的等离子体偏振器件的研究[D]. 合肥: 合肥工业大学, 2016.

    LI Rongzhen. Study of Plasma Polarization Devices Based on Metasurface Structures[D]. Hefei: Hefei University of Technology, 2016.
    [6]
    YU N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. American Association for the Advancement of Science, 2011, 6054: 333-337.
    [7]
    CHEN Houtong, Antoinette J Taylor, YU Nanfang. A review of metasurfaces: physics and applications[J/OL]. Optics, 2017, https://arxiv.org/abs/1605.07672 .
    [8]
    YU Nanfang, Federico Capasso. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150. DOI: 10.1038/nmat3839
    [9]
    Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. Doi: 10.1021/nl300204s.
    [10]
    Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. DOI: 10.1364/OL.27.001141
    [11]
    Peifer C, Grhic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett. , 2013(110): 197401.
    [12]
    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201-594201.
    [13]
    PU Mingbo, HU Chenggang, WANG Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. DOI: 10.1364/OE.19.017413
    [14]
    彭华新, 周济, 崔铁军, 等. 超材料[M]. 北京: 中国铁道出版社, 2020.

    PENG Huaxin, ZHOU Ji, CUI Tiejun, et al. Metamaterial[M]. Beijing: China Railway Press, 2020.
    [15]
    Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Publishing Group, 2014, 8(12): 889-898.
    [16]
    Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. DOI: 10.1021/nl302516v
    [17]
    LIN D, FAN P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. DOI: 10.1126/science.1253213
    [18]
    Khorasaninejad M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. DOI: 10.1021/acs.nanolett.6b05137
    [19]
    CHEN K, FENG Y, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422. DOI: 10.1002/adma.201606422
    [20]
    ZHENG G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. DOI: 10.1038/nnano.2015.2
    [21]
    LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. DOI: 10.1039/C7NR07154J
    [22]
    NI Xingjie, Alexander V Kildishev, Vladimir M Shalaev. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. DOI: 10.1038/ncomms3807
    [23]
    Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for Terahertz focusing[J]. Sci. Rep. , 2015, 5: 7738. DOI: 10.1038/srep07738
    [24]
    Yuk T I, CHEUNG S W, ZHU H L. Mechanically pattern reconfigurable antenna using metasurface[J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1331-1336.
    [25]
    ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891-2898. DOI: 10.1109/TAP.2014.2310209
    [26]
    NI C, CHEN M, ZHANG Z, et al. Design of frequency and polarization reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.
    [27]
    WAN X, ZHANG L, JIA S L, et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434. DOI: 10.1109/TAP.2017.2722829
    [28]
    CAI H, CHEN S, ZOU C, et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves[J]. Adv. Opt. Mater. , 2018, 6(14): 1800257. DOI: 10.1002/adom.201800257
    [29]
    Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. Experimental demonstration of ultrafast thz modulation in a graphene-based thin film absorber through negative photoinduced conductivity[J]. ACS Author Choice, 2019, 6(3): 720-727.
    [30]
    ZHAO X, WANG Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. Acs Photonics, 2019, 6(4): 830-837. DOI: 10.1021/acsphotonics.8b01644
    [31]
    CONG L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 2020, 32(28): 2001418. DOI: 10.1002/adma.202001418
    [32]
    Mousavi S H, Khanikaev A B, Neuner B, et al. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs[J]. Optics Express, 2011, 19(22): 22142-22155. DOI: 10.1364/OE.19.022142
    [33]
    ZHANG J, MEI Z, ZHANG W, et al. An ultrathin directional carpet cloak based on generalized snell's law[J]. Applied Physics Letters, 2013, 103(15): 1780.
    [34]
    LIU S, XU H X, ZHANG H C, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. DOI: 10.1364/OE.22.013403
    [35]
    NI Xingjie, WONG Zijing, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. DOI: 10.1126/science.aac9411
    [36]
    TAN X, ZHANG H, LI J, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245. DOI: 10.1038/s41467-020-19085-1
    [37]
    苏君红. 红外材料与探测技术[M]. 杭州: 浙江科学技术出版社, 2015.

    SU Junhong. Infrared Materials and Detection Technology[M]. Hangzhou: Zhejiang Science and Technology Press, 2015.
    [38]
    Dereniak L Eustace. Infrared Detectors and Systems[M]. Hoboken: Wiley, 1996.
    [39]
    邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 13.

    DENG Honglang, ZHOU Shaolin, CEN Guanting. Progress in infrared and THz electromagnetic absorption metasurface[J]. Photoelectric Engineering, 2019, 46(8): 13.
    [40]
    徐天宇. 微纳结构超表面增强吸收研究[D]. 长春: 长春理工大学, 2019.

    XU Tianyu. Ultrasurface-Enhanced Absorption Study of Micro-Nano Structures[D]. Changchun: Changchun University of Science and Technology, 2019.
    [41]
    Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
    [42]
    Smith E M, Nath J, Ginn J, et al. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers[C]// SPIE Defense + Security, 2016, Doi: 10.1117/12.2223954.
    [43]
    LI Q, YU B Q, LI Z F. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application[J]. Chinese Physics B, 2017(8): 269-274.
    [44]
    JUNG J Y, SONG K, Choi J H, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer[J]. Scientific Reports, 2017, 7(1): 430. DOI: 10.1038/s41598-017-00586-x
    [45]
    Alkorjia O, Abdullah A, Koppula A. Metasurface based uncooled microbolometer with high fill factor[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, XXXIII, 2019: 2126-2129.
    [46]
    Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731. DOI: 10.1038/s41598-020-66476-x
    [47]
    Joseph J Talghader, Anand S Gawarikar, Ryan P Shea. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.
    [48]
    Thomas Maier, Hubert Brückl. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
    [49]
    Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22): 3766-3768. DOI: 10.1364/OL.35.003766
    [50]
    Kim H, Neikirk D P, Andresen B F, et al. Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 19.
    [51]
    JUNG J Y, LEE J, CHOI D G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection[J]. IEEE Photonics Journal, 2015, 7(6): 1-11.
    [52]
    DU K, LI Q, ZHANG W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.
    [53]
    LIU Tao, QU Chuang, Mahmoud Almasri, et al. Design and analysis of frequency-selective surface enabled microbolometers[C]//Infrared Technology and Applications XLII. SPIE, 2016, 9819: 487-494.
    [54]
    LIU T, Abdullah A A, Alkorjia O, et al. Device architecture for metasurface integrated Uncooled SixGeyO1-x-y Infrared Microbolometers (Conference Presentation)[C]// Infrared Technology and Applications XLV, 2019, 11002: 372-378.
    [55]
    Creazzo T A, Zablocki M J, Zaman L, et al. Frequency selective infrared optical filters for micro-bolometers [C]// SPIE Defense + Security, 2017, 10194: 611-618.
    [56]
    Gallacher K, Millar R W, Giliberti V, et al. Mid-infrared n-Ge on Si plasmonic based microbolometer sensors[C]//IEEE International Conference on Group IV Photonics, 2017: 3-4.
    [57]
    DAO T D, Doan A T, Ishii S, et al. MEMS-based wavelength-selective bolometers[J]. Micromachines, 2019, 10(6): 416. DOI: 10.3390/mi10060416
    [58]
    JIANG S, LI J, LI J, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Optics Express, 2022, 30(6): 9065-9087. DOI: 10.1364/OE.452981
  • Related Articles

    [1]WANG Wenjin, KONG Jincheng, QI Wenbin, ZHANG Yang, SONG Linwei, WU Jun, ZHAO Wen, YU Jianyun, QIN Gang. Research Progress on Materials and Devices of HgCdTe p-on-n Double Layer Heterojunction Grown by VLPE[J]. Infrared Technology , 2024, 46(3): 233-245.
    [2]YANG Chunzhang, QIN Gang, LI Yanhui, LI Da, KONG Jincheng. Research on Growth of M/L-wavelength Dual-band IR-MCT on CZT Substrate by MBE[J]. Infrared Technology , 2018, 40(1): 1-5.
    [3]ZHOU Lianjun, HAN Fuzhong, BAI Piji, SHU Chang, SUN Hao, WANG Xiaojuan, LI Jinghui, ZOU Pengcheng, GUO Jianhua, WANG Qiongfang. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology , 2017, 39(2): 116-124.
    [4]QIN Gang, LI Dongsheng, LI Xiongjun, LI Yanhui, WANG Xiangqian, YANG Yan, TIE Xiaoying, ZUO Dafan, BO Junxiang. Research on the Technique of in-situ p-on-n MWIR-MCT by MBE[J]. Infrared Technology , 2016, 38(10): 820-824.
    [5]WANG Yi-feng, LI Pei-zhi, LIU Li-ming, WANG Dan-lin. Developments of Very Long Wavelength Mercury Cadmium Telluride Infrared Detectors[J]. Infrared Technology , 2012, 34(7): 373-382. DOI: 10.3969/j.issn.1001-8891.2012.07.001
    [6]Developments of Mercury Cadmium Telluride in Recent Years[J]. Infrared Technology , 2009, 31(8): 435-442. DOI: 10.3969/j.issn.1001-8891.2009.08.001
    [7]The Determination of Cadmium-Mercury Telluride Composition for Any Thickness by Infrared Transmission[J]. Infrared Technology , 2005, 27(1): 39-41. DOI: 10.3969/j.issn.1001-8891.2005.01.009
    [8]Measurement on Minority Carrier Lifetime of Mercury Cadmium Telluride Material by Microwave Photoconductivity Decay Method[J]. Infrared Technology , 2003, 25(6): 42-44,48. DOI: 10.3969/j.issn.1001-8891.2003.06.012
    [9]p+n Infrared Detectors by As Ion Implantation in HgCdTe[J]. Infrared Technology , 2002, 24(4): 46-48,26. DOI: 10.3969/j.issn.1001-8891.2002.04.012
    [10]The Surface Passivation of MCT Infrared Detectors[J]. Infrared Technology , 2001, 23(3): 9-12,15. DOI: 10.3969/j.issn.1001-8891.2001.03.003
  • Cited by

    Periodical cited type(4)

    1. 王振,刘磊. 基于改进分水岭算法的电力设备红外图像分割. 红外技术. 2025(04): 484-492 . 本站查看
    2. 刘沛津,张香瑞,魏平. 基于融合重构的电气设备红外图像EnFCM聚类分割方法. 红外技术. 2024(03): 295-304 . 本站查看
    3. 张利军. 基于红外热成像技术的变电站巡检机器人的应用. 山东煤炭科技. 2024(12): 168-172 .
    4. 冯杰,张莹,叶影,贺润平,王哲斐. NSST域电气设备红外图像增强处理算法设计. 电子设计工程. 2023(21): 176-179+185 .

    Other cited types(3)

Catalog

    Article views (298) PDF downloads (146) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return