YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.
Citation: YANG Jun, YUAN Jun, YANG Chunli, WANG Wenjin, ZHANG Jie, LI Huani. Application of Metasurfaces in Microbolometers[J]. Infrared Technology , 2024, 46(1): 1-11.

Application of Metasurfaces in Microbolometers

More Information
  • Received Date: December 03, 2022
  • Revised Date: February 14, 2023
  • Metasurfaces have overcome the electromagnetic limitations of traditional natural materials and solved the bottlenecks of difficult processing and implementation of three-dimensional metamaterials, leading devices to continuously develop towards integration, miniaturization, low cost, and tunability. Metasurfaces are widely used in many fields and are increasingly valued in the field of detectors. Through unique material and structural designs, metasurfaces can effectively achieve precise control of various electromagnetic wave characteristics. Through the integration of metasurfaces, microbolometers are more likely to enhance light absorption and improve the device band selection. This article elaborates on the research on metasurfaces and their applications in microbolometers, demonstrating the development trend and broad prospects of metasurfaces in this field.
  • [1]
    Veselago V G. The electrodynamics of substance with simultaneously negative values of ε and μ[J]. Physics-Uspekhi, 1968, 10: 509-514. DOI: 10.1070/PU1968v010n04ABEH003699
    [2]
    Pendry J B. Negative refraction index makes perfect lens[J]. Phys. Rev. Lett. , 2000, 85: 3966-3969. DOI: 10.1103/PhysRevLett.85.3966
    [3]
    Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett, 2000, 84(18): 4184-4187. DOI: 10.1103/PhysRevLett.84.4184
    [4]
    罗先刚. 亚波长电磁学(上册)[M]. 北京: 科学出版社, 2017: 197-232.

    LUO Xiangang. Subwavelength Eectromagnetism (Volume 1)[M]. Beijing: Science Press, 2017: 197-232.
    [5]
    李荣真. 基于超表面结构的等离子体偏振器件的研究[D]. 合肥: 合肥工业大学, 2016.

    LI Rongzhen. Study of Plasma Polarization Devices Based on Metasurface Structures[D]. Hefei: Hefei University of Technology, 2016.
    [6]
    YU N, Genevet P, Kats M, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. American Association for the Advancement of Science, 2011, 6054: 333-337.
    [7]
    CHEN Houtong, Antoinette J Taylor, YU Nanfang. A review of metasurfaces: physics and applications[J/OL]. Optics, 2017, https://arxiv.org/abs/1605.07672 .
    [8]
    YU Nanfang, Federico Capasso. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139-150. DOI: 10.1038/nmat3839
    [9]
    Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. Doi: 10.1021/nl300204s.
    [10]
    Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. DOI: 10.1364/OL.27.001141
    [11]
    Peifer C, Grhic A. Metamaterial huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys. Rev. Lett. , 2013(110): 197401.
    [12]
    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201-594201.
    [13]
    PU Mingbo, HU Chenggang, WANG Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. DOI: 10.1364/OE.19.017413
    [14]
    彭华新, 周济, 崔铁军, 等. 超材料[M]. 北京: 中国铁道出版社, 2020.

    PENG Huaxin, ZHOU Ji, CUI Tiejun, et al. Metamaterial[M]. Beijing: China Railway Press, 2020.
    [15]
    Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Publishing Group, 2014, 8(12): 889-898.
    [16]
    Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. DOI: 10.1021/nl302516v
    [17]
    LIN D, FAN P, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. DOI: 10.1126/science.1253213
    [18]
    Khorasaninejad M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. DOI: 10.1021/acs.nanolett.6b05137
    [19]
    CHEN K, FENG Y, Monticone F, et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 2017, 29(17): 1606422. DOI: 10.1002/adma.201606422
    [20]
    ZHENG G, Muehlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency [J]. Nature Nanotechnology, 2015, 10(4): 308-312. DOI: 10.1038/nnano.2015.2
    [21]
    LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. DOI: 10.1039/C7NR07154J
    [22]
    NI Xingjie, Alexander V Kildishev, Vladimir M Shalaev. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. DOI: 10.1038/ncomms3807
    [23]
    Kuznetsov S A, Astafev M A, Beruete M, et al. Planar holographic metasurfaces for Terahertz focusing[J]. Sci. Rep. , 2015, 5: 7738. DOI: 10.1038/srep07738
    [24]
    Yuk T I, CHEUNG S W, ZHU H L. Mechanically pattern reconfigurable antenna using metasurface[J]. IET Microwaves, Antennas & Propagation, 2015, 9(12): 1331-1336.
    [25]
    ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891-2898. DOI: 10.1109/TAP.2014.2310209
    [26]
    NI C, CHEN M, ZHANG Z, et al. Design of frequency and polarization reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 78-81.
    [27]
    WAN X, ZHANG L, JIA S L, et al. Horn antenna with reconfigurable beam-refraction and polarization based on anisotropic huygens metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4427-4434. DOI: 10.1109/TAP.2017.2722829
    [28]
    CAI H, CHEN S, ZOU C, et al. Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves[J]. Adv. Opt. Mater. , 2018, 6(14): 1800257. DOI: 10.1002/adom.201800257
    [29]
    Tasolamprou A C, Koulouklidis A D, Daskalaki C, et al. Experimental demonstration of ultrafast thz modulation in a graphene-based thin film absorber through negative photoinduced conductivity[J]. ACS Author Choice, 2019, 6(3): 720-727.
    [30]
    ZHAO X, WANG Y, Schalch J, et al. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers[J]. Acs Photonics, 2019, 6(4): 830-837. DOI: 10.1021/acsphotonics.8b01644
    [31]
    CONG L, Singh R. Spatiotemporal dielectric metasurfaces for unidirectional propagation and reconfigurable steering of terahertz beams[J]. Advanced Materials, 2020, 32(28): 2001418. DOI: 10.1002/adma.202001418
    [32]
    Mousavi S H, Khanikaev A B, Neuner B, et al. Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs[J]. Optics Express, 2011, 19(22): 22142-22155. DOI: 10.1364/OE.19.022142
    [33]
    ZHANG J, MEI Z, ZHANG W, et al. An ultrathin directional carpet cloak based on generalized snell's law[J]. Applied Physics Letters, 2013, 103(15): 1780.
    [34]
    LIU S, XU H X, ZHANG H C, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. DOI: 10.1364/OE.22.013403
    [35]
    NI Xingjie, WONG Zijing, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. DOI: 10.1126/science.aac9411
    [36]
    TAN X, ZHANG H, LI J, et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J]. Nature Communications, 2020, 11(1): 5245. DOI: 10.1038/s41467-020-19085-1
    [37]
    苏君红. 红外材料与探测技术[M]. 杭州: 浙江科学技术出版社, 2015.

    SU Junhong. Infrared Materials and Detection Technology[M]. Hangzhou: Zhejiang Science and Technology Press, 2015.
    [38]
    Dereniak L Eustace. Infrared Detectors and Systems[M]. Hoboken: Wiley, 1996.
    [39]
    邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 13.

    DENG Honglang, ZHOU Shaolin, CEN Guanting. Progress in infrared and THz electromagnetic absorption metasurface[J]. Photoelectric Engineering, 2019, 46(8): 13.
    [40]
    徐天宇. 微纳结构超表面增强吸收研究[D]. 长春: 长春理工大学, 2019.

    XU Tianyu. Ultrasurface-Enhanced Absorption Study of Micro-Nano Structures[D]. Changchun: Changchun University of Science and Technology, 2019.
    [41]
    Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
    [42]
    Smith E M, Nath J, Ginn J, et al. Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers[C]// SPIE Defense + Security, 2016, Doi: 10.1117/12.2223954.
    [43]
    LI Q, YU B Q, LI Z F. Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application[J]. Chinese Physics B, 2017(8): 269-274.
    [44]
    JUNG J Y, SONG K, Choi J H, et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer[J]. Scientific Reports, 2017, 7(1): 430. DOI: 10.1038/s41598-017-00586-x
    [45]
    Alkorjia O, Abdullah A, Koppula A. Metasurface based uncooled microbolometer with high fill factor[C]// International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, XXXIII, 2019: 2126-2129.
    [46]
    Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731. DOI: 10.1038/s41598-020-66476-x
    [47]
    Joseph J Talghader, Anand S Gawarikar, Ryan P Shea. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24-e24.
    [48]
    Thomas Maier, Hubert Brückl. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 2009, 34(19): 3012-3014. DOI: 10.1364/OL.34.003012
    [49]
    Maier T, Brueckl H. Multispectral microbolometers for the midinfrared[J]. Optics Letters, 2010, 35(22): 3766-3768. DOI: 10.1364/OL.35.003766
    [50]
    Kim H, Neikirk D P, Andresen B F, et al. Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2013, 8704: 19.
    [51]
    JUNG J Y, LEE J, CHOI D G, et al. Wavelength-selective infrared metasurface absorber for multispectral thermal detection[J]. IEEE Photonics Journal, 2015, 7(6): 1-11.
    [52]
    DU K, LI Q, ZHANG W, et al. Wavelength and thermal distribution selectable microbolometers based on metamaterial absorbers[J]. IEEE Photonics Journal, 2015, 7(3): 1-8.
    [53]
    LIU Tao, QU Chuang, Mahmoud Almasri, et al. Design and analysis of frequency-selective surface enabled microbolometers[C]//Infrared Technology and Applications XLII. SPIE, 2016, 9819: 487-494.
    [54]
    LIU T, Abdullah A A, Alkorjia O, et al. Device architecture for metasurface integrated Uncooled SixGeyO1-x-y Infrared Microbolometers (Conference Presentation)[C]// Infrared Technology and Applications XLV, 2019, 11002: 372-378.
    [55]
    Creazzo T A, Zablocki M J, Zaman L, et al. Frequency selective infrared optical filters for micro-bolometers [C]// SPIE Defense + Security, 2017, 10194: 611-618.
    [56]
    Gallacher K, Millar R W, Giliberti V, et al. Mid-infrared n-Ge on Si plasmonic based microbolometer sensors[C]//IEEE International Conference on Group IV Photonics, 2017: 3-4.
    [57]
    DAO T D, Doan A T, Ishii S, et al. MEMS-based wavelength-selective bolometers[J]. Micromachines, 2019, 10(6): 416. DOI: 10.3390/mi10060416
    [58]
    JIANG S, LI J, LI J, et al. Metamaterial microbolometers for multi-spectral infrared polarization imaging[J]. Optics Express, 2022, 30(6): 9065-9087. DOI: 10.1364/OE.452981
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [3]LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333.
    [4]YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292.
    [5]GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005.
    [6]WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
    [7]GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51.
    [8]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197.
    [9]KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
    [10]HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153.
  • Cited by

    Periodical cited type(25)

    1. 李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
    2. 周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
    3. 兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
    4. 任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
    5. 温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
    6. 侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
    7. 杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
    8. 吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
    9. 李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
    10. 陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
    11. 曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
    12. 吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
    13. 李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
    14. 潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
    15. 张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
    16. 范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
    17. 白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
    18. 邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
    19. 王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
    20. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 . 本站查看
    21. 李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
    22. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    23. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 . 本站查看
    24. 孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
    25. 李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return