XIAO Wenjian, WANG Yanbin, JIANG Chenglong, ZHOU Xuanfeng, ZHANG Defeng. Analysis and Modeling of IR Detection Systems for Complex Scenes[J]. Infrared Technology , 2025, 47(1): 29-35, 43.
Citation: XIAO Wenjian, WANG Yanbin, JIANG Chenglong, ZHOU Xuanfeng, ZHANG Defeng. Analysis and Modeling of IR Detection Systems for Complex Scenes[J]. Infrared Technology , 2025, 47(1): 29-35, 43.

Analysis and Modeling of IR Detection Systems for Complex Scenes

More Information
  • Received Date: August 01, 2023
  • Revised Date: September 19, 2023
  • Modeling and simulation have wide applications in the performance design, test evaluation, and combat simulation of IR detection systems. To meet the need for the performance modeling of IR detection systems in complex combat scenes, the effects of the detector array structure, sampling efficiency, image blur, and other factors on detection were analyzed based on the traditional geometric model, and the effects of clutter and human interference on detection in complex scenarios was analyzed. All these factors were introduced into the performance modeling of the IR detection system, and an IR detection system model that can be applied to complex scenes was established. Simulation examples show that the model can realistically simulate the performance characteristics of IR detection systems in complex combat scenes and has important application value in IR detection system design, performance evaluation, and combat test simulation.

  • [1]
    马金龙, 马立元, 方丹. 仿真环境下导弹制导控制系统抗干扰性能测试方法[J]. 战术导弹技术, 2020, 31(3): 93-97.

    MA Jinlong, MA Liyuan, FANG Dan. Test scheme of anti-interference performance of missile guidance and control system in simulation environment[J]. Tactical Missile Technology, 2020, 31(3): 93-97.
    [2]
    白杨, 张成, 王博宇, 等. 机载末端红外对抗作战效能仿真研究[J]. 红外与激光工程, 2022, 51(11): 141-150.

    BAI Yang, ZHANG Cheng, WANG Boyu, et al. Simulation of airborne terminal infrared countermeasure operational effectiveness[J]. Infrared and Laser Engineering, 2022, 51(11): 141-150.
    [3]
    王霞, 白江辉, 金伟其, 等. 红外成像系统动态性能模型进展研究[J]. 红外技术, 2016, 38(12): 997-1004. DOI: 10.11846/j.issn.1001_8891.201612001

    WANG Xia, BAI Jianghui, JIN Weiqi, et al. Development and research of infrared imaging system dynamic performance model[J]. Infrared Technology, 2016, 38(12): 997-1004. DOI: 10.11846/j.issn.1001_8891.201612001
    [4]
    曹淑艳, 唐善军, 范晋祥, 等. 红外探测系统建模仿真: 方法, 应用与问题[J]. 制导与引信, 2017, 38(1): 5-14.

    CAO Shuyan, TANG Shanjun, FAN Jingxiang, et al. Model and simulation for infrared detection system: approaches, applications and issues[J]. Guidance & Fuze, 2017, 38(1): 5-14.
    [5]
    王楚越, 杨利峰, 何道刚. 地面点源中波红外探测建模与验证研究[J]. 红外技术, 2023, 45(4): 357-363. http://hwjs.nvir.cn/article/id/cc40dae2-7c8e-435c-9a41-563ced9823c2

    WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and verification of ground point source for mid-wave infrared detection[J]. Infrared Technology, 2023, 45(4): 357-363. http://hwjs.nvir.cn/article/id/cc40dae2-7c8e-435c-9a41-563ced9823c2
    [6]
    徐振亚, 付奎生, 祁鸣, 等. 一种用于发射后截获的红外导引头探测距离估算方法[J]. 红外技术, 2020, 42(11): 1095-1102. http://hwjs.nvir.cn/article/id/dee58fea-97ff-474b-9816-c04a5c62dc81

    XU Zhenya, FU Kuisheng, QI Ming, et al. Estimation method of infrared seeker detection range used for lock-on-after-launch[J]. Infrared Technology, 2020, 42(11): 1095-1102. http://hwjs.nvir.cn/article/id/dee58fea-97ff-474b-9816-c04a5c62dc81
    [7]
    Duncan L Hickman. Target detection: the transition from unresolved to extended targets[C]//Proc of SPIE, 2021, 11866: 118660F.
    [8]
    袁磊, 王毕艺, 罗超, 等. 红外探测系统的激光辐照热效应仿真分析[J]. 强激光与粒子束, 2023, 35(2): 16-22.

    YUAN Lei, WANG Biyi, LUO Chao, et al. Simulation analysis of thermal effect of laser irradiation in infrared detection system[J]. High Power Laser and Particle Beams, 2023, 35(2): 16-22.
    [9]
    吴立民, 刘雨晨, 杨坤, 等. 复杂环境下弱信号红外探测系统灵敏度需求及实现方法研究[J]. 激光与红外, 2019, 49(4): 447-453. DOI: 10.3969/j.issn.1001-5078.2019.04.010

    WU Limin, LIU Yuchen, YANG Kun, et al. Research on sensitivity requirement and implement method of weak signal infrared detecting system during complicated environment[J]. Laser & Infrared, 2019, 49(4): 447-453. DOI: 10.3969/j.issn.1001-5078.2019.04.010
    [10]
    郭冰涛, 韩琪, 惠进, 等. 基于识别距离的红外成像仿真验证方法[J]. 应用光学, 2022, 43(4): 719-725.

    GUO Bingtao, HAN Qi, HUI Jin, et al. Validation method of infrared imaging simulation based on recognition range[J]. Journal of Applied Optics, 2022, 43(4): 719-725.
    [11]
    刘明奇, 王思远, 何玉青, 等. 采用多种红外视距模型的子弹辐射探测系统作用距离分析[J]. 中国光学, 2015, 8(4): 636-643.

    LIU Mingqi, WANG Siyuan, HE Yuqing, et al. Bullet radiation detection range analysis based on multiple infrared visual range prediction models[J]. Chinese Optics, 2015, 8(4): 636-643.
    [12]
    孙新德, 薄树奎, 李琳琳. 基于背景估计的红外图像杂波抑制方法研究[J]. 激光与红外, 2011, 41(5): 586-590.

    SUN Xinde, BO Shukui, LI Linlin. Study of infrared image clutter suppression based on background estimation[J]. Laser & Infrared, 2011, 41(5): 586-590.
    [13]
    童锡良, 周峰. 针对点目标探测的背景杂波量化改进方法[J]. 红外技术, 2018, 40(4): 346-354. http://hwjs.nvir.cn/article/id/hwjs201804008

    TONG Xiliang, ZHOU Feng. Improved clutter quantification method for point target detection[J]. Infrared Technology, 2018, 40(4): 346-354. http://hwjs.nvir.cn/article/id/hwjs201804008
    [14]
    苗锡奎, 张岩岫, 张恒伟, 等. 基于方向选择性机制的图像背景杂波建模方法[J]. 红外与激光工程, 2022, 51(6): 471-481.

    MIAO Xikui, ZHANG Yanxiu, ZHANG Hengwei, et al. Image background clutter modeling method based on directional selectivity mechanism[J]. Infrared and Laser Engineering, 2022, 51(6): 471-481.
    [15]
    赵丽, 杨国庆, 李周, 等. 红外系统点目标作用距离计算方法分析与实例[J]. 红外技术, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc

    ZHAO Li, YANG Guoqing, LI Zhou, et al. Analysis and example of operating range calculation method for point target in infrared system[J]. Infrared Technology, 2022, 44(12): 1273-1277. http://hwjs.nvir.cn/article/id/2fd4abf4-f871-45f5-b54a-629d4b538cbc
  • Related Articles

    [1]CAI Ruhua, ZHOU Jianbin, WU Sunyong, ZHENG Xiangfei. An Adaptive Tracking Algorithm for Infrared Dim Small Targets in Complex Scenes Based on GLMB Filter[J]. Infrared Technology , 2024, 46(7): 743-753.
    [2]ZHAO Shuang, CHEN Shuyue, WANG Qiaoyue. Infrared Pedestrian Detection in Complex Night Scenes[J]. Infrared Technology , 2021, 43(6): 575-582.
    [3]SONG Minmin, WANG Shuang, LYU Tao, YUAN Yujian. A Method for Infrared Dim Small Target Detection in Complex Scenes of Sky and Ground[J]. Infrared Technology , 2018, 40(10): 996-1001.
    [4]WANG Dongjing, ZHANG Baohui, CHEN Hongyuan, WANG Runyu, WU Jie, WU Xudong. Moving-target Detection Algorithm Adapting Complex Background Interference[J]. Infrared Technology , 2017, 39(11): 1024-1031.
    [5]Study on Performance Computing and Simulation of Infrared Imaging System under Light Interference[J]. Infrared Technology , 2015, (2): 110-113.
    [6]LIU Ben-li, WANG Hong-xia, ZHU You-zhang, SONG Zi-biao, WU Wei. Research on Infrared Interference Characteristics of Carbon Black Smoke Screen[J]. Infrared Technology , 2010, 32(8): 483-486. DOI: 10.3969/j.issn.1001-8891.2010.08.012
    [7]LI Yan-hong, CHEN Hong-shu, ZHENG Jian-long, ZHANG Wu-long, HU Zhi-yi, TIAN Shao-hui. Research on Influential Factors of Emissivity of Infrared Camoulflage Coatings[J]. Infrared Technology , 2008, 30(8): 454-457. DOI: 10.3969/j.issn.1001-8891.2008.08.006
    [8]ZHOU Ming-shan, XU Ming, LI Cheng-jun, CHEN Zuo-ru, LI Jun-you. Preparation and Extinction Capability of Infrared Interference Agent[J]. Infrared Technology , 2006, 28(12): 726-729. DOI: 10.3969/j.issn.1001-8891.2006.12.011
    [9]LIU Ze-long, GUO Jian-guang, MIAO Yun-kun, ZHENG Wei-ping. Compare the Interference Performance of Several Burnable Organic Smoke Screens to IR[J]. Infrared Technology , 2006, 28(2): 116-119. DOI: 10.3969/j.issn.1001-8891.2006.02.015
    [10]Analysis of the Factors which Effect the Observation Result of the Night Vision Meter[J]. Infrared Technology , 2003, 25(4): 26-31. DOI: 10.3969/j.issn.1001-8891.2003.04.007

Catalog

    Article views (74) PDF downloads (33) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return