Citation: | ZHAO Shuang, CHEN Shuyue, WANG Qiaoyue. Infrared Pedestrian Detection in Complex Night Scenes[J]. Infrared Technology , 2021, 43(6): 575-582. |
[1] |
XU Z, ZHUANG J, LIU Q, et al. Nighttime FIR pedestrian detection benchmark dataset for ADAS[C]// Proceedings of Pattern Recognition and Computer Vision, 2018: 323-333.
|
[2] |
TAO Y, FU D, SHU P. Pedestrian tracking for infrared image sequence based on trajectory manifold of spatio-temporal slice[J]. Multimedia Tools and Applications, 2017, 76: 11021-11035. DOI: 10.1007/s11042-016-3461-8
|
[3] |
刘洋. 基于LS-DYNA的汽车正面碰撞计算机模拟仿真[D]. 西安: 西华大学, 2011.
LIU Yang. Simulation on the Front Impact of Vehicle Based on LS-DYNA[D]. Xi'an: Xihua University, 2011.
|
[4] |
Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, 1(1): 886-893.
|
[5] |
Bosch A, Zisserman A, Munoz X. Representing shape with a spatial pyramid kernel[C]//Acm International Conference on Image & Video Retrieval, 2007: 401-408(doi: https://doi.org/10.1145/1282280.1282340).
|
[6] |
Sangeetha D, Deepa P. A low-cost and high-performance architecture for robust human detection using histogram of edge oriented gradients[J]. Microprocessors and Microsystems, 2017, 53: 106-119. DOI: 10.1016/j.micpro.2017.07.009
|
[7] |
ZHENG C H, PEI W J, YAN Q, et al. Pedestrian detection based on gradient and texture feature integration[J]. Neurocomputing, 2017, 228: 71-78. DOI: 10.1016/j.neucom.2016.09.085
|
[8] |
朱聪聪, 项志宇. 基于梯度方向和强度直方图的红外行人检测[J]. 计算机工程, 2014, 40(12): 195-198, 204. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201412037.htm
ZHU Congcong, XIANG Zhiyu. Infrared pedestrian detection based on histograms of oriented gradients and intensity[J]. Computer Engineering, 2014, 40(12): 195-198, 204. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201412037.htm
|
[9] |
Itti L, Koch E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Trans., 1998, 20(11): 1254-1259 http://dl.acm.org/citation.cfm?id=297870
|
[10] |
Radhakrishna A, Sheila H, Francisco E, et al. Frequency-tuned salient region detection[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: (doi: 10.1109/CVPR.2009.5206596).
|
[11] |
HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007: (doi: 10.1109/CVPR.2007.383267).
|
[12] |
Alexe B, Deselaers T, Ferrari V. Measuring the objectness of image windows[J]. IEEE Transactions on Software Engineering, 2012, 34(11): 2189-2202. http://newmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM22248633
|
[13] |
WANG X, HAN T X, YAN S. An HOG-LBP human detector with partial occlusion handling[C]//12th International Conference on Computer Vision of IEEE, 2010: (doi: 10.1109/ICCV.2009.5459207).
|
[14] |
Javier M N, Vazquez D, Lopez A M, et al. Occlusion handling via random subspace classifiers for human detection[J]. IEEE sTransactions on Cybernetics, 2013, 44(3): V342-354. http://www.ncbi.nlm.nih.gov/pubmed/23757554
|
[15] |
Broggi A, Bertozzi M, Fascioli A, et al. Shape-based pedestrian detection[C]//IEEE Intelligent Vehicles Symposium, 2000: (doi: 10.1109/IVS.2000.898344).
|
[16] |
Brehar R, Vancea C, Nedevschi S. Pedestrian detection in infrared images using aggregated channel features[C]//IEEE International Conference on Intelligent Computer Communication & Processing, 2014: (doi: 10.1109/ICCP.2014.p6936964).
|
[17] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 99: 2999-3007. DOI: 10.1109/ICCV.2017.324
|
[18] |
车凯, 向郑涛, 陈宇峰, 等. 基于改进Fast R-CNN的红外图像行人检测研究[J]. 红外技术, 2018, 40(6): 578-584. http://hwjs.nvir.cn/article/id/hwjs201806010
CHE Kai, XIANG Zhengtao, CHEN Yufeng, et al. Research on infrared image pedestrian detection based on improved fast R-CNN[J]. Infrared Technology, 2018, 40(6): 578-584. http://hwjs.nvir.cn/article/id/hwjs201806010
|
[1] | GUO Shuangquan, HAO Huan, WANG Yang. Infrared Image Fault Recognition Method for Disconnector Based on HOG Features[J]. Infrared Technology , 2025, 47(2): 243-249. |
[2] | ZHANG Xingping, SHAO Yanhua, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu. Aerial Infrared Pedestrian Detection with Saliency Map Fusion[J]. Infrared Technology , 2024, 46(9): 1043-1050. |
[3] | LYU Pengyuan, LAN Jinjiang, ZENG Xueren, NIU Pei, FANG Liang, ZHAO Songpu. Infrared Object Detection Algorithm Based on Feature Enhancement and Fusion[J]. Infrared Technology , 2024, 46(7): 782-790. |
[4] | YU Dong, LIN Suzhen, LU Xiaofei, LI Dawei, WANG Yanbo. Saliency-based Multiband Image Synchronization Fusion Method[J]. Infrared Technology , 2022, 44(10): 1095-1102. |
[5] | LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664. |
[6] | ZHAO Hongshan, ZHANG Zeyan, MENG Hang, ZHANG Junhao. Infrared Target Detection of High Voltage Insulation Bushing Based on Textural Features[J]. Infrared Technology , 2021, 43(3): 258-265. |
[7] | LI Xiying, HUANG Qiuxiao. Indoor Crowd Density Classification in Infrared Images Based on Fusing High-order Statistics of Histogram with Gray Level Co-occurrence Matrix Features[J]. Infrared Technology , 2017, 39(7): 626-631,637. |
[8] | YANG Li, YANG Hua, LV Xiang-yin, JIN Wei, ZHAO Ji-jin. Infrared Feature of the Solar Panels in Orbit[J]. Infrared Technology , 2014, 36(5): 394-397. |
[9] | WU Xiao-sheng, SUN Jun-ding. Image Retrieval Based on Improvement Histogram and Spatial Feature[J]. Infrared Technology , 2007, 29(11): 666-669. DOI: 10.3969/j.issn.1001-8891.2007.11.012 |
[10] | XUAN Yi-min, HONG Yu-ping, HAN Yu-ge. An Analysis on the Infrared Thermal Features of Bridges[J]. Infrared Technology , 2000, 22(4): 10-14. DOI: 10.3969/j.issn.1001-8891.2000.04.003 |