YANG Feng, ZHAO Weijun, GU Yan, DONG Junyuan, LYU Yang, LI Haisheng, GUO Yiliang, ZHU Bo. Low-light Image Enhancement via Detail Saliency Estimation[J]. Infrared Technology , 2024, 46(10): 1145-1153.
Citation: YANG Feng, ZHAO Weijun, GU Yan, DONG Junyuan, LYU Yang, LI Haisheng, GUO Yiliang, ZHU Bo. Low-light Image Enhancement via Detail Saliency Estimation[J]. Infrared Technology , 2024, 46(10): 1145-1153.

Low-light Image Enhancement via Detail Saliency Estimation

More Information
  • Received Date: November 23, 2021
  • Revised Date: January 27, 2022
  • Reflectance recovery via the simultaneous estimation of reflectance and illumination is a prevalent and effective solution for image enhancement based on retinex decomposition, but its use results in a complex algorithm structure because reflectance recovery is formulated as a constrained optimization problem that cannot be solved via simple optimization techniques. In this study, a detailed saliency estimation method is proposed to recover reflectance from grayscale images via optimization employing gradient descent algorithms. This method is built on our hypothesis of dark region approximation (DRA). Because the illumination in dark regions of a low-light image is weak to the point of being negligible, the intensities of dark regions in the captured images are approximated as reflectance. The Gaussian field criterion is applied to establish a differentiable optimization function via DRA. This unconstrained optimization problem is then solved using the quasi-Newton method to estimate the detail saliency layer via the DRA-based retinex model. Finally, the reflectance is recovered from the detailed saliency layer. The results for a variety of images demonstrate the superiority of our method over several state-of-the-art methods in terms of enhancement efficiency and quality.

  • [1]
    王丹, 陈亮. 基于深度学习的红外夜视图像超分辨率重建[J]. 红外技术, 2019, 41(10): 963-969. http://hwjs.nvir.cn/article/id/hwjs201910012

    WANG Dan, CHEN Liang. Super-resolution reconstruction of infrared images in night environments based on deep-learning[J]. Infrared Technology, 2019, 41(10): 963-969. http://hwjs.nvir.cn/article/id/hwjs201910012
    [2]
    李永涛, 何亚磊, 巫风玲. 基于结构相似性算法的微光夜视仪可靠性试验故障诊断[J]. 红外技术, 2021, 43(9): 889-894. http://hwjs.nvir.cn/article/id/f8ccc5e5-c826-4e11-a493-cf9b92ef50de

    LI Yongtao, HE Yalei, WU Fengling. Fault diagnosis of reliability test for low-light-level vision device based on structural similarity algorithm[J]. Infrared Technology, 2021, 43(9): 889-894. http://hwjs.nvir.cn/article/id/f8ccc5e5-c826-4e11-a493-cf9b92ef50de
    [3]
    Touati R, Mignotte M, Dahmane M. Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov random field model[J]. IEEE Transactions on Image Processing, 2019, 29: 757-767.
    [4]
    WU Xiaojian, Kim Mijin, QU Haoran, et al. Single-defect spectroscopy in the shortwave infrared[J]. Nature Communications, 2019, 10(1): 2672. DOI: 10.1038/s41467-019-10788-8
    [5]
    Saif M, Kwanten W J, Carr J A, et al. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin[J]. Nature Biomedical Engineering, 2020, 10: 2672.
    [6]
    LI Mading, LIU Jiaying, YANG Jiaying, et al. Structure-revealing low-light image enhancement via robust Retinex model [J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828-2841. DOI: 10.1109/TIP.2018.2810539
    [7]
    LI Hui, WU Xiaojun. DenseFuse: a fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
    [8]
    Arnob Md Masud Parvez, HUNG Nguyen, ZHU Han, et al. Compressed sensing hyperspectral imaging in the 0.9-2.5 μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector[J]. Applied optics, 2018, 57(18): 5019-5024. DOI: 10.1364/AO.57.005019
    [9]
    Land E H. The Retinex theory of color vision[J]. Scientific American, 1978, 237(6): 108-128.
    [10]
    Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex [J]. IEEE Trans. Image Process. , 1997, 6(3): 451-462.
    [11]
    Jobson D J, Rahman, Woodell G A, et al. A multiscale Retinex for bridging the gap between color images and the human observation[J]. IEEE Transactions on Image Process. , 1997, 6(7): 965-965.
    [12]
    FU Xueyang, ZENG Delu, YUE Huang, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: DOI: 10.1109/CVPR.2016.304.
    [13]
    GUO Xiaojie, YU Li, LING Haibin. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
    [14]
    REN Xutong, YANG Wenhan, CHENG Wenhuang, et al. LR3M: Robust low-light enhancement via low-rank regularized Retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5862-5876.
    [15]
    Pizer S M, Johnston R E, Ericksen J P, et al. Contrast-limited adaptive histogram equalization: Speed and effectiveness[C]//Proc. 1st Conf. Visualizat. Biomed. Comput., 1990: 337-345.
    [16]
    Marques T P, Albu A B. L2UWE: a framework for the efficient enhance-ment of low-light underwater images using local contrast and multi-scale fusion[C]//Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020: 538-547.
    [17]
    HAO Shijie, HAN Xu, GUO Yanrong, et al. Low-light image enhance-ment with semi-decoupled decomposition[J]. IEEE Trans. Multimedia, 2020, 22(12): 3025-3038.
    [18]
    Hautiere N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis & Stereology, 2011, 27(2): 87-95.
    [19]
    WANG Shiqi, MA Kede, Yeganeh H, et al. A patch-structure represent-tation method for quality assessment of contrast changed images[J]. IEEE Signal Processing Letters, 2015, 22(12): 2387-2390.
    [20]
    Matkovic K, László Neumann, Neumann A, et al. Global contrast factor-a new approach to image contrast [C]//Computational Aesthetics 2005: Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging 2005: 25-33.
  • Cited by

    Periodical cited type(1)

    1. 李俊霖. 自适应引导滤波下图像多尺度细节增强. 现代电子技术. 2025(09): 24-27 .

    Other cited types(0)

Catalog

    Article views (100) PDF downloads (50) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return