基于深度学习的红外夜视图像超分辨率重建

王丹, 陈亮

王丹, 陈亮. 基于深度学习的红外夜视图像超分辨率重建[J]. 红外技术, 2019, 41(10): 963-969.
引用本文: 王丹, 陈亮. 基于深度学习的红外夜视图像超分辨率重建[J]. 红外技术, 2019, 41(10): 963-969.
WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.
Citation: WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969.

基于深度学习的红外夜视图像超分辨率重建

详细信息
  • 中图分类号: TP183

Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning

  • 摘要: 针对红外夜视图像对比度低、成像质量不高的问题,提出适合红外夜视图像超分辨率重建方法.在自然图像超分辨率重建模型的基础上增加基于Retinex的对比度增强预处理步骤,并对网络模型做如下改进:构建超深卷积神经网络学习低分辨率图像与高分辨率图像之间的映射关系,增大感受野,提升网络学习能力;仅学习高低分辨率图像间的差值信息加速网络收敛.针对高分辨率红外夜视图像不易获得,数据量较少的问题,利用迁移学习理论,使用少量的高分辨率红外夜视图像为目标样本,对自然图像超分辨率重建模型进行微调,得到适合红外夜视图像重建的网络权重模型.实验结果证明:使用该方法得到的红外夜视图像信息丰富,层次分明,具有良好的视觉效果.
计量
  • 文章访问数:  303
  • HTML全文浏览量:  26
  • PDF下载量:  39
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日