Research on Calculation of Defect Area of Building Exterior Windows Based on Infrared Image Processing Technology
-
摘要: 将红外热成像与图像处理技术结合应用于建筑外窗缺陷的检测,提出一种外窗缺陷检测和面积计算方法。通过外窗缺陷检测实验,利用压差法进行外窗空气渗透检测,求出渗透的缺陷面积。将红外热成像仪采集的外窗红外图像进行图像的预处理、外窗缺陷的检测以及检测后的面积计算,并建立外窗缺陷红外图像检测模型。结果表明:利用加权平均法进行灰度化处理,中值滤波进行降噪处理、图像锐化和直方图均衡化进行图像增强处理,处理效果明显,可作为外窗红外图像的预处理方式;Roberts算法对预处理后外窗红外图像的检测与实验值差异最小,检测信息更接近实际缺陷位置;将处理方法和检测模型与建筑整体气密性检测结合,能够在现场对外窗气密性能等级进行初步判定。Abstract: A method for defect detection and area calculation of exterior windows of buildings is proposed by combining infrared thermal imaging technology and image processing technology. Using equipment for detection of building exterior window defects, the differential-pressure method was utilized to detect the air penetration of an exterior window, and the defective area of the air penetration of this window was calculated. Infrared images of the exterior window of the building collected by an infrared thermal imager were subjected to image preprocessing, exterior window defect detection, and area calculation after inspection. Then, an infrared-image detection model of exterior window defects was established. The results show that preprocessing can make use of the weighted average method for grayscale processing, the median filter for noise reduction, image sharpening, and histogram equalization for image enhancement processing. The outcome of the aforementioned approaches is evident. The detection of the pretreatment infrared image, which is obtained using the Roberts algorithm, minimizes the difference between the test and experimental values. This makes the detection information closer to the actual position of the defect. A primary assessment of the airtightness performance level of exterior windows can be achieved by comparing the results provided by the proposed infrared image processing technology with airtightness on-site tests.
-
Key words:
- Exterior window defects /
- area calculation /
- infrared thermal imaging /
- image processing
-
图 4 图像增强结果对比(a)、(f)、(k)灰度化处理;(b)、(g)、(l)中值滤波处理;(c)、(h)、(m)拉普拉斯锐化;(d)、(i)、(n)直方图均衡化;(e)、(j)、(o)两种方式混合
Figure 4. Comparison of image enhancement results: (a), (f), (k) Gray scale processing; (b), (g), (l) Median filtering; (c), (h), (m) Laplacian sharpening; (d), (i), (n) Histogram equalization; (e), (j), (o) Two methods mixed
表 1 外窗缺陷面积对比
Table 1. Defect area comparison table of windows
Windows Value of experiment/cm2 Roberts/cm2 Sobel/cm2 Prewitt/cm2 Canny/cm2 Log/cm2 Threshold value segmentation/cm2 C0407(1) 0.90 0.96 1.39 1.39 1.70 1.62 0.92 C0407(2) 1.50 1.50 1.80 1.80 1.40 2.10 1.50 C0709(1) 3.20 3.28 4.07 3.94 3.49 5.86 3.68 C0709(2) 3.20 3.21 4.03 3.84 3.46 4.48 3.65 C0814(1) 4.30 5.19 11.32 11.07 6.58 11.61 4.70 C0814(2) 4.10 4.53 11.93 11.81 5.59 12.64 4.30 C1218(1) 11.20 11.50 14.44 14.40 15.44 7.20 11.52 C1218(2) 10.50 10.95 18.13 17.89 11.73 14.47 11.32 C1218(3) 10.30 11.03 14.22 14.02 10.89 14.76 10.43 C1218(4) 11.10 11.30 14.07 13.82 12.94 7.93 11.21 C1716(1) 9.20 9.30 11.92 11.90 9.32 4.96 9.30 C1716(2) 14.50 15.01 16.79 16.62 14.83 9.57 14.24 C2114(1) 15.80 14.86 25.42 24.88 22.93 23.33 16.87 C2114(2) 11.50 13.80 17.20 17.00 13.80 16.30 13.90 C2418(1) 22.10 24.50 30.92 30.50 36.28 26.65 25.66 C2418(2) 20.90 24.60 31.80 31.40 23.40 26.90 24.60 Error of mean - 7.23% 56.01% 53.76% 26.18% 61.60% 7.67% -
[1] Mathur U, Damle R. Impact of air infiltration rate on the thermal transmittance value of building envelope[J]. Journal of Building Engineering, 2021, 40: 102302. doi: 10.1016/j.jobe.2021.102302 [2] Lai Y, Ridley I, Brimblecombe P. Blower-door estimates of PM 2.5 deposition rates and penetration factors in an idealized room[J]. Indoor and Built Environment, 2022, 31(8): 2064-2082. doi: 10.1177/1420326X20944427 [3] 中国建筑科学研究院有限公司. 建筑外门窗气密、水密、抗风压性能检测方法: GB/T 7106-2019[S]. 国家市场监督管理总局, 国家标准化管理委员会, 2019.China Academy of Building Research, Test methods of air permeability, water tightness, wind load resistance performance for building external windows and doors: GB/T 7106-2019[S]. State Administration for Market Regulation; Standardization Administration, 2019. [4] 张小愉. 建筑门窗三性检测方法探究[J]. 中国建材科技, 2019, 28(6): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ201906006.htmZHANG Xiaoyu. Exploration on three-character detection method of architectural doors and windows [J]. China Building Materials Science & Technology, 2019, 28(6): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ201906006.htm [5] 张浚泉. 建筑门窗工程质量检测探讨[J]. 门窗, 2017(2): 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MENC201803010.htmZHANG Junquan. Discussion on quality inspection of building door and window engineering[J]. Doors & Windows, 2017(2): 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-MENC201803010.htm [6] Figuli L, Papan D, Papánová Z, et al. Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact[J]. Smart Structures and Systems, 2021, 27(2): 365-378. [7] JI Y, Duanmu L. Airtightness field tests of residential buildings in Dalian, China[J]. Building and Environment, 2017, 119(7): 20-30. https://www.sciencedirect.com/science/article/pii/S0360132317301610 [8] Barreira E, Almeida R M S F, Moreira M. An infrared thermography passive approach to assess the effect of leakage points in buildings[J]. Energy & Buildings, 2017, 140(4): 224-235. https://www.sciencedirect.com/science/article/pii/S0378778817304206 [9] Freitas S S D, Freitas V P D, Barreira E. Detection of fade plaster detachments using infrared thermography – a nondestructive technique[J]. Construction & Building Materials, 2014, 70(11): 80-87. [10] Ibarra-Castanedo C, Sfarra S, Klein M, et al. Solar loading thermography: time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures[J]. Infrared Physics & Technology, 2017, 82: 56-74. https://www.sciencedirect.com/science/article/pii/S135044951630620X [11] Mahmoodzadeh M, Gretka V, Wong S, et al. Evaluating patterns of building envelope air leakage with infrared thermography[J]. Energies, 2020, 13(14): 3545. doi: 10.3390/en13143545 [12] CHEN Y F, SANG N. Attention-based hierarchical fusion of visible and infrared images[J]. Optik, 2015, 126(23): 4243-4248. doi: 10.1016/j.ijleo.2015.08.120 [13] Lourenço Tomás, Matias Luís, Faria P. Anomalies detection in adhesive wall tiling systems by infrared thermography[J]. Construction and Building Materials, 2017, 148: 419-428. doi: 10.1016/j.conbuildmat.2017.05.052 [14] Hiasa S H, Birgul R, Catbas N, et al. A data processing methodology for infrared thermography images of concrete bridges[J]. Computers & Structures, 2017, 190(10): 205-218. https://www.sciencedirect.com/science/article/pii/S0045794916312238 [15] Omar T, Nehdi M L, Zayed T. Infrared thermography model for automated detection of delamination in RC bridge decks[J]. Construction & Building Materials, 2018, 168: 313-327. doi: 10.12096/j.2096-4528.pgt.2018.048 [16] LV C, WANG K, GU G, et al. Accurate full-edge detection and depth measurement of internal defects using digital speckle pattern interferometry[J]. NDT & E International, 2019, 102(3): 1-8. https://www.sciencedirect.com/science/article/pii/S0963869518302445 [17] Mohan A, Poobal S. Crack detection using image processing: A critical review and analysis[J]. Alexandria Engineering Journal, 2017: 787-798. https://www.sciencedirect.com/science/article/pii/S1110016817300236 [18] HAN Q, YIN Q, ZHENG X, et al. Remote sensing image building detection method based on mask R-CNN[J]. Complex & Intelligent Systems, 2022, 8(1): 1847-1835. [19] Gehri N, J Mata-Falcón, Kaufmann W. Automated crack detection and measurement based on digital image correlation[J]. Construction and Building Materials, 2020, 256: 119383. doi: 10.1016/j.conbuildmat.2020.119383 [20] Thusyanthan I, Blower T, Cleverly W. Innovative uses of thermal imaging in civil engineering[J]. Proceedings of the Institution of Civil Engineers, 2017, 170(CE2): 81-87. doi: 10.1680/jcien.16.00014 [21] Ostańska Anna. Thermal imaging for detection of defects in envelopes of buildings in use: qualitative and quantitative analysis of building energy performance[J]. Periodica Polytechnica Civil Engineering, 2018, 62(4): 939-946. [22] PAN N H, Tsai C H, CHEN K Y, et al. Enhancement of external wall decoration material for the building in safety inspection method[J]. Journal of Civil Engineering and Management, 2020, 26: 216-226. [23] JIANG M. Edge enhancement and noise suppression for infrared image based on feature analysis[J]. Infrared Physics & Technology, 2018, 91: 142-152. https://www.sciencedirect.com/science/article/pii/S1350449517308617 [24] Kim C, Choi J S, Jang H, et al. Automatic detection of linear thermal bridges from infrared thermal images using neural network[J]. Applied Sciences, 2021, 11(3): 931. [25] CHEN L, WANG Y, JIA S, et al. Development of panoramic infrared images for surface temperature analysis of buildings and infrastructures[J]. Energy and Buildings, 2020, 232(1): 110660. [26] D Antón, Amaro-Mellado J L. Engineering graphics for thermal assessment: 3D thermal data visualisation based on infrared thermography, GIS and 3D point cloud processing software[J]. Symmetry, 2021, 13(2): 335. [27] Mun J, Lee J, Kim M. Estimation of infiltration rate (ACH Natural) using blower door test and simulation[J]. Energies, 2021, 14(4): 912. [28] LI X, ZHOU W, LIN D. Research on air infiltration predictive models for residential building at different pressure[J]. Building Simulation, 2020: 1-12. [29] DI Yue, LI Meiyan, QIAO Tong, et al. Edge detection and mathematic fitting for corneal surface with Matlab software[J]. International Journal of Ophthalmology, 2017, 10(3): 336-342. http://www.ijo.cn/gjyken/ch/reader/view_abstract.aspx?file_no=20170302&flag=1 [30] Thenkabail P S, Biradar R M, Noojipady P, et al. Sub-pixel area calculation methods for estimating irrigated areas[J]. Sensors, 2007, 7(11): 2519. https://www.mdpi.com/1424-8220/7/11/2519 [31] 李峰, 周雷, 苗刚中. 基于单目视觉的目标测距方法[J]. 中国科学技术大学学报, 2012, 42: 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202102016.htmLI Feng, ZHOU Lei, MIAO Gangzhong. Target ranging method based on monocular vision[J]. Journal of University of Science and Technology of China, 2012, 42: 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202102016.htm [32] 杨玉忠, 李丽梅, 陈刚, 等. 利用红外热像仪测试窗洞口热工缺陷的研究[J]. 建筑科学, 2016, 32(8): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201608019.htmYANG Yuzhong, LI Limei, CHEN Gang, et al. Study on the thermodynamic disfigurement testing for window opening by infrared thermography[J]. Building Science, 2016, 32(8): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201608019.htm [33] 冯力强, 王欢祥, 晏大玮, 等. 红外热像法检测建筑外墙饰面层内部缺陷试验研究[J]. 土木工程学报, 2014, 47(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201406010.htmFENG Liqiang, WANG Huanxiang, YAN Dawei, et al. Experimental study on internal defects detection of exterior wall finish coat by infrared thermography[J]. China Civil Engineering Journal, 2014, 47(6): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201406010.htm [34] 田鹏飞, 周骥平, 朱兴龙, 等. 基于红外热成像的气密性检测技术探讨[J]. 扬州大学学报(自然科学版), 2013, 16(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ201302012.htmTIAN Pengfei, ZHOU Jiping, ZHU Xinglong, et al. Research on air tightness detection based on infrared thermal imaging[J]. Journal of Yangzhou University(Natural Science Edition), 2013, 16(2): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ201302012.htm -