On-Site Detection of Airtightness of Building Windows Based on Infrared Image Processing
-
摘要: 针对目前建筑外窗气密性现场检测方法无法保证其所有安装外窗的气密性等级全部达标,同时缺乏高效、便捷的检测手段,提出一种外窗气密性能等级现场检测方法,通过热像仪对外窗进行红外图像采集,对图像中的异常区域进行缺陷检测并计算缺陷面积,建立外窗缺陷红外检测模型。根据实验测得的室内外温差、外窗缺陷面积、空气渗透量,建立外窗空气渗透量计算模型,将此模型与外窗缺陷红外检测模型结合求得窗户的空气渗透量,实现外窗气密性能的现场检测,初步判定外窗是否符合相应的气密性能等级,提高了外窗气密性能现场检测的效率,为外窗气密性能等级现场判定提供一种新的途径。Abstract: Current methods of on-site detection of airtightness of building windows cannot ensure that the airtightness grades of all windows satisfy the standard. Moreover, there is a lack of efficient and convenient detection methods. Thus, we proposed an on-site method to detect the airtightness performance level of windows. In this study, an infrared image of the windows is collected using a thermal imager, the abnormal area in the image is detected and the defect area is calculated, then an infrared detection model for window defects is established. Based on the experimentally measured indoor–outdoor temperature difference, the defect area of the window and air infiltration, a calculation model for the air infiltration of windows is built. The model is combined with the infrared detection model of exterior windows defects to obtain the air infiltration of the window, and the on-site detection of the windows airtightness performance is realized and then preliminary determine of whether the window meets the corresponding airtightness performance level, which improves the efficiency of the on-site inspection of the airtightness performance of windows and provides a new method for the on-site determination of the airtightness performance level of windows.
-
0. 引言
框架式稳定平台系统近年来发展迅速,广泛应用于飞行器上的目标探测系统、精确制导武器的导引系统等。三自由度框架式红外稳定平台实现惯性空间稳定和对目标跟踪的同时,还可以直接测量制导系统所需的视线角速度信息[1]。三自由度稳定平台在结构上由3个单轴运动框架复合而成,机械装配中产生的装调误差造成框架轴系偏差[2-3]、红外探测器位姿偏差以及陀螺敏感轴的交叉耦合[4-5],使得基座角运动的耦合更加复杂[6],对测量视线角速度带来不利的影响。
文献[7]研究了仅陀螺敏感轴交叉耦合情况下视线角速度的计算。所得结果是在框架轴系正交的假设下得到的。而实际系统中框架的装配必然会存在一定装调误差。本文系统研究了框架、陀螺和红外探测器均存在装调误差时,三自由度框架式红外视线角速度的计算方法,建立基于三轴稳定平台的轴系偏差的数学模型,分析了装调误差对视线角速度计算的影响,并进行仿真验证。
1. 稳定平台系统
三自由度框架式红外稳定平台系统的示意图如图 1。图中,O-XbYbZb表示载体坐标系。载体坐标系的原点取为稳定平台回转中心且坐标系和载体固连。
框架式红外稳定平台系统一般将探测成像系统和速率陀螺安装在稳定平台上,稳定平台固定在内环框架上,成为内环框架的负载。内环框架和稳定平台组成内环本体组合,通过内环框架转轴固定在中环框架上,成为中环框架的负载。中环框架和内环本体组合通过中环框架转轴固定在外环框架上,成为外环框架的负载。外环框架转轴架固定在红外稳定平台的载体上。外环框架相对载体可以做滚转运动;外环框架处于零位时,中环框架相对载体可以做偏航运动;外环框架和中环框架处于零位时,内环框架相对载体可以做俯仰运动。通过内环、中环、外环3个框架的运动合成,可以实现稳定平台在惯性空间中绕回转中心转动。
2. 轴系偏差建模
针对三自由度红外稳定平台的结构特点,除了前面定义的载体坐标系O-XbYbZb,再建立外环坐标系O-XoYoZo、中环坐标系O-XmYmZm、平台坐标系O-XpYpZp和探测坐标系O-XdYdZd。这4个坐标系原点均为稳定平台回转中心,其中,外环坐标系X轴和外环框架转轴固连;中环坐标系Y轴与中环框架转轴固连;平台坐标系Z轴和内环框架转轴固连;探测坐标系和探测器光敏面固连,其X轴对应光敏面的中垂线(即探测成像系统光轴),Y轴和Z轴分别对应探测器光敏面的行和列。
在设计的理想状态下,探测成像系统光轴与内环框架转轴、内环框架转轴与中环框架转轴、中环框架转轴与外环框架转轴应分别正交,而外环框架转轴和载体纵轴完全重合。探测坐标系和平台坐标系重合且各框架处于零位时,4个坐标系和载体坐标系重合。记外环框架角为φw,中环框架角为φz,内环框架角为φn,角度正负按右手规则确定,那么各坐标系相互间的变换关系如图 2所示。
实际装配时,框架轴系不可能做到零误差。本文描述轴系装调误差的参数为α1、β1、α2、β2、α3、β3、α4、β4和γ4。其中,α1为外环框架转轴在载体坐标系XOZ面的投影与载体系X轴的夹角;β1为外环框架转轴与载体系XOZ面的夹角;α2为中环框架转轴在外环坐标系YOZ面的投影与外环系Y轴的夹角;β2为中环框架转轴与载体系YOZ面的夹角;α3为内环框架转轴在中环坐标系XOZ面的投影与中环系Z轴的夹角;β3为内环框架转轴与中环系β3面的夹角;α4为探测器光敏面中垂线在平台系XOZ面的投影与平台系X轴的夹角;β4为光敏面中垂线与平台系XOZ面的夹角;γ4和α4、β4一起构成一组平台系到探测系的欧拉角。角度正负号按右手规则确定。当这些装调误差存在时,各坐标系相互间的变换关系如图 3所示。
3. 视线角速度的计算
当稳定跟踪目标时,探测成像系统光轴和视线重合,那么视线角速度$\dot{q}$近似为光轴在惯性空间中转动的角速度在探测系YOZ面的投影。由于探测成像系统是固连在稳定平台上的,所以光轴在惯性空间中转动的角速度也是平台转动的角速度$\tilde{\omega }$。为了简化分析,本文假设载体不动,并定义如下矩阵函数:
$$ {\mathit{\boldsymbol{T}}_x}(\phi ) = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&{\cos \phi }&{ - \sin \phi }\\ 0&{\sin \phi }&{\cos \phi } \end{array}} \right], $$ $$ {\mathit{\boldsymbol{T}}_y}(\phi ) = \left[ {\begin{array}{*{20}{c}} {\cos \phi }&0&{\sin \phi }\\ 0&1&0\\ { - \sin \phi }&0&{\cos \phi } \end{array}} \right], $$ $$ {\mathit{\boldsymbol{T}}_z}(\phi ) = \left[ {\begin{array}{*{20}{c}} {\cos \phi }&{ - \sin \phi }&0\\ {\sin \phi }&{\cos \phi }&0\\ 0&0&1 \end{array}} \right]。 $$ 当存在轴系偏差时,各坐标系之间按图 3的方式进行变换。此时在惯性空间中,平台转动的角速度$\tilde \omega $在探测系中的投影为:
$$ \begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {{{\tilde \omega }_{{\rm{d}}x}}}\\ {{{\tilde \omega }_{{\rm{d}}y}}}\\ {{{\tilde \omega }_{{\rm{d}}z}}} \end{array}} \right] = \\T_x^{ - 1}({\gamma _4})T_z^{ - 1}({\beta _4})T_y^{ - 1}({\alpha _4})\left( {\left[ {\begin{array}{*{20}{c}} 0\\ 0\\ {{\omega _{\rm{n}}}} \end{array}} \right] + T_z^{ - 1}({\phi _{\rm{n}}})T_x^{ - 1}({\beta _3})T_y^{ - 1}({\alpha _3})\left( {\left[ {\begin{array}{*{20}{c}} 0\\ {{\omega _z}}\\ 0 \end{array}} \right] + T_y^{ - 1}({\phi _z})T_z^{ - 1}({\beta _2})T_x^{ - 1}({\alpha _2})\left[ {\begin{array}{*{20}{c}} {{\omega _w}}\\ 0\\ 0 \end{array}} \right]} \right)} \right)}\\ { = {A_{\tilde \omega }}({\phi _z}, \, {\phi _{\rm{n}}}, \, {\alpha _2}, \, {\beta _2}, \, {\alpha _3}, \, {\beta _3}, \, {\alpha _4}, \, {\beta _4}, {\gamma _4})\left[ {\begin{array}{*{20}{c}} {{\omega _{\rm{w}}}}\\ {{\omega _{\rm{z}}}}\\ {{\omega _{\rm{n}}}} \end{array}} \right]} \end{array} $$ (1) 式中:φn为内环框架角;φz为中环框架角;ωn是位标器内环框架转动的角速度,其方向沿平台坐标系的Z轴;ωz是位标器中环框架转动的角速度,其方向沿中环坐标系的Y轴。ωw是位标器外环框架转动的角速度,其方向沿外环坐标系的X轴。于是按本文中对视线角速度$\dot q$的近似,其在探测系中为:
$$ \left[ {\begin{array}{*{20}{c}} {{{\dot q}_{{\rm{d}}x}}}\\ {{{\dot q}_{{\rm{d}}y}}}\\ {{{\dot q}_{{\rm{d}}z}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\tilde \omega }_{{\rm{d}}x}}}\\ {{{\tilde \omega }_{{\rm{d}}y}}}\\ {{{\tilde \omega }_{{\rm{d}}z}}} \end{array}} \right] = {\mathit{\boldsymbol{A}}_{\dot q}}({\phi _{\rm{z}}}, \, {\phi _{\rm{n}}}, \, {\alpha _2}, \, {\beta _2}, \, {\alpha _3}, \, {\beta _3}, \, {\alpha _4}, \, {\beta _4}, {\gamma _4})\left[ {\begin{array}{*{20}{c}} {{\omega _{\rm{w}}}}\\ {{\omega _{\rm{z}}}}\\ {{\omega _{\rm{n}}}} \end{array}} \right] $$ (2) 式中:${\mathit{\boldsymbol{A}}_{\dot q}} = \left[ {\begin{array}{*{20}{c}} 0&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]{\mathit{\boldsymbol{A}}_{\bar \omega }}$。
对于三自由度框架式红外稳定平台系统,稳定平台上正交安装了偏航/俯仰陀螺分别测量平台相对惯性空间的偏航/俯仰角速度;外环框架上安装有外环陀螺,可以测量外框架相对惯性空间的滚转角速度。理想情况下,稳定平台偏航/俯仰陀螺的敏感轴分别平行于平台坐标系的Y轴和Z轴,外环陀螺敏感轴与外环坐标系X轴平行。这里仍用第2章轴系偏差建模的方法描述陀螺的装配误差,记误差参数为α5、β5、α6、β6、α7、β7。其中,α5为外环陀螺敏感轴在外环系XOZ面的投影与外环系X轴的夹角;β5为外环陀螺敏感轴与外环系XOZ面的夹角;α6为中环陀螺敏感轴在平台系YOZ面的投影与平台系Y轴的夹角;β6为中环陀螺敏感轴与平台系YOZ面的夹角;α7为内环陀螺敏感轴在平台系XOZ面的投影与平台系Z轴的夹角;β7为内环陀螺敏感轴与平台系XOZ面的夹角。角度正负号按右手规则确定。那么在考虑轴系偏差情形下,陀螺的输出和外、中、内环框架的角速度满足下式:
$$ \begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {{{\hat \omega }_{\rm{w}}}}\\ {{{\hat \omega }_{\rm{z}}}}\\ {{{\hat \omega }_{\rm{n}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos {\alpha _5}\cos {\beta _5}}&{\sin {\beta _5}}&{ - \sin {\alpha _5}\cos {\beta _5}}\\ 0&0&0\\ 0&0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{\omega _{\rm{w}}}}\\ 0\\ 0 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&0&0\\ { - \sin {\beta _6}}&{\cos {\alpha _6}\cos {\beta _6}}&{\sin {\alpha _6}\cos {\beta _6}}\\ {\sin {\alpha _7}\cos {\beta _7}}&{ - \sin {\beta _7}}&{\cos {\alpha _7}\cos {\beta _7}} \end{array}} \right]}\\ {\quad \quad \quad \cdot \left( {\left[ {\begin{array}{*{20}{c}} 0\\ 0\\ {{\omega _{\rm{n}}}} \end{array}} \right] + T_z^{ - 1}({\phi _n})T_x^{ - 1}({\beta _3})T_y^{ - 1}({\alpha _3})\left( {\left[ {\begin{array}{*{20}{c}} 0\\ {{\omega _z}}\\ 0 \end{array}} \right] + T_y^{ - 1}({\phi _z})T_z^{ - 1}({\beta _2})T_x^{ - 1}({\alpha _2})\left[ {\begin{array}{*{20}{c}} {{\omega _{\rm{w}}}}\\ 0\\ 0 \end{array}} \right]} \right)} \right)}\\ { = {\mathit{\boldsymbol{A}}_g}({\phi _z}, \, {\phi _n}, \, \, {\alpha _2}, \, {\beta _2}, \, {\alpha _3}, \, {\beta _3}, \, {\alpha _5}, \, {\beta _5}, \, {\alpha _6}, \, {\beta _6}, \, {\alpha _7}, \, {\beta _7})\left[ {\begin{array}{*{20}{c}} {{\omega _{\rm{w}}}}\\ {{\omega _{\rm{z}}}}\\ {{\omega _{\rm{n}}}} \end{array}} \right]} \end{array} $$ (3) 式中:${\hat \omega _{\rm{w}}}$是外环陀螺的输出;${\hat \omega _{\rm{z}}}$是偏航陀螺的输出;${\hat \omega _{\rm{n}}}$是内环陀螺的输出。
将式(3)代入式(2),得到视线角速度在探测坐标系中的测量计算公式为:
$$ \left[ {\begin{array}{*{20}{c}} {{{\dot q}_{{\rm{d}}x}}}\\ {{{\dot q}_{{\rm{d}}y}}}\\ {{{\dot q}_{{\rm{d}}z}}} \end{array}} \right] = \mathit{\boldsymbol{T}}({\phi _z}, \, {\phi _n}, \, {\alpha _2}, \, {\beta _2}, \, {\alpha _3}, \, {\beta _3}, \, {\alpha _4}, \, {\beta _4}, {\gamma _4}\, {\alpha _5}, \, {\beta _5}, \, {\alpha _6}, \, {\beta _6}, \, {\alpha _7}, \, {\beta _7})\left[ {\begin{array}{*{20}{c}} {{{\hat \omega }_{\rm{w}}}}\\ {{{\hat \omega }_{\rm{z}}}}\\ {{{\hat \omega }_{\rm{n}}}} \end{array}} \right] $$ (4) 式中:$\mathit{\boldsymbol{T}} = {A_{\dot q}}A_g^{ - 1}$。
最后将其按图 3的坐标变换关系可得视线角速度在载体系中的测量计算公式为:
$$ \left[ {\begin{array}{*{20}{c}} {{{\dot q}_{bx}}}\\ {{{\dot q}_{by}}}\\ {{{\dot q}_{bz}}} \end{array}} \right] = {\mathit{\boldsymbol{T}}_y}({\alpha _1}){\mathit{\boldsymbol{T}}_z}({\beta _1}){\mathit{\boldsymbol{T}}_x}({\phi _w}){\mathit{\boldsymbol{T}}_x}({\alpha _2}){\mathit{\boldsymbol{T}}_z}({\beta _2}){\mathit{\boldsymbol{T}}_y}({\phi _z}){\mathit{\boldsymbol{T}}_y}({\alpha _3}){\mathit{\boldsymbol{T}}_x}({\beta _3}){\mathit{\boldsymbol{T}}_z}({\phi _n}){\mathit{\boldsymbol{T}}_y}({\alpha _4}){\mathit{\boldsymbol{T}}_z}({\beta _4}){\mathit{\boldsymbol{T}}_x}({\gamma _4})\mathit{\boldsymbol{T}}\left[ {\begin{array}{*{20}{c}} {{{\hat \omega }_{\rm{w}}}}\\ {{{\hat \omega }_{\rm{z}}}}\\ {{{\hat \omega }_{\rm{n}}}} \end{array}} \right] $$ (5) 当各误差参数都取零时,式(4)即蜕化成:
$$ \left[ {\begin{array}{*{20}{c}} {{{\dot q}_{{\rm{d}}x}}}\\ {{{\dot q}_{{\rm{d}}y}}}\\ {{{\dot q}_{{\rm{d}}z}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\hat \omega }_{\rm{w}}}}\\ {{{\hat \omega }_{\rm{z}}}}\\ {{{\hat \omega }_{\rm{n}}}} \end{array}} \right] $$ (6) 将其坐标变换到载体系可得:
$$ \left[ {\begin{array}{*{20}{c}} {{{\dot q}_{bx}}}\\ {{{\dot q}_{by}}}\\ {{{\dot q}_{bz}}} \end{array}} \right] = {\mathit{\boldsymbol{T}}_x}({\phi _w}){\mathit{\boldsymbol{T}}_y}({\phi _z}){\mathit{\boldsymbol{T}}_z}({\phi _{\rm{n}}})\left[ {\begin{array}{*{20}{c}} 0\\ {{{\hat \omega }_{\rm{z}}}}\\ {{{\hat \omega }_{\rm{n}}}} \end{array}} \right] $$ (7) 也即理想情况下,三自由度框架式红外稳定平台系统稳定跟踪目标时,稳定平台上正交安装的偏航/俯仰陀螺可以直接测量出视线角速度。特别当框架轴系误差参数取零时,式(4)即蜕化成文献[7]中的结果。因此,式(4)也可以认为是对装调误差进行补偿,而且较文献[7]中的结果更具有一般性。
4. 仿真分析
对三自由度框架式红外稳定平台系统进行视线角速度测量试验。试验中载体静止,目标转台做30°/s匀速运动。记录稳定跟踪目标时的陀螺输出和框架角输出,如图 4和图 5所示。
用实测数据按第3章的计算公式进行离线仿真。仿真时,设置4种条件:忽略所有误差、忽略陀螺安装误差、忽略框架轴系误差和综合考虑各装调误差,具体误差参数如表 1所示。
表 1 装调误差参数设置Table 1. Parameters setting of installation errorsAxis system deviation /° Alignment error of gyros/° (α1, β1) (α2, β2) (α3, β3) (α4, β4, γ4) (α5, β5) (α6, β6) (α7, β7) 1 (0, 0) (0, 0) (0, 0) (0, 0, 0) (0, 0) (0, 0) (0, 0) 2 (0, -0.02) (0.02, 0.1) (-0.03, 0) (0.03, 0.08, 2.5) (0, 0) (0, 0) (0, 0) 3 (0, 0) (0, 0) (0, 0) (0, 0, 0) (-0.05, 0.04) (0.03, -0.4) (-0.02, 0.1) 4 (0, -0.02) (0.02, 0.1) (-0.03, 0) (0.03, 0.08, 2.5) (-0.05, 0.04) (0.03, -0.4) (-0.02, 0.1) 图 6给出了4种情况下的视线角速度曲线,其中实线表示忽略所有误差测量得到的结果,点划线是忽略陀螺安装误差的结果,长虚线是忽略框架轴系误差的结果,带“+”实线是综合考虑各装调误差得到的结果。图 7是图 6的局部放大。
图 6 仿真结果比较图Figure 6. Comparison with simulation results (solid line shows the result of neglecting all errors; dash dot line shows the result of neglecting alignment error of gyros; dash line shows the result of neglecting axis system deviation; solid line with "+" shows the result of considering all errors)仿真试验结果表明,对装调误差进行补偿,可以提高视线角速度测量的精度。忽略装调误差时,测量计算的视线角速度较理论值最大偏差为4.08°/s;仅对框架轴系误差补偿时,视线角速度最大偏差减小到2.53°/s;仅对陀螺安装误差时,视线角速度最大偏差减小到1.49°/s;综合考虑各装调误差进行补偿,视线角速度最大偏差进一步减小到1.18°/s。总体来看,陀螺敏感轴交叉耦合对视线角速度精度的影响较框架轴系误差更显著。
5. 结论
本文系统研究了框架和陀螺均存在装调误差时,三自由度框架式红外视线角速度的计算方法,并进行仿真分析。结果表明,在计算视线角速度时如果对误差进行补偿,可以提高视线角速度的测量精度。在提高线角速度测量精度方面,补偿陀螺敏感轴交叉耦合的效果比补偿框架轴系偏差更显著。所以陀螺敏感轴交叉耦合对视线角速度的影响在各装调误差中最大。此结果对新型框架式稳定平台系统总体设计时的误差指标分配有重要的参考价值。
-
表 1 外窗缺陷面积对比
Table 1 Defect area comparison of windows
Windows Value of experiment/cm2 Roberts/cm2 Sobel/cm2 Prewitt/cm2 Canny/cm2 Log/cm2 Threshold value segmentation/cm2 C0407(1) 0.90 0.96 1.39 1.39 1.70 1.62 0.92 C0407(2) 1.50 1.50 1.80 1.80 1.40 2.10 1.50 C0709(1) 3.20 3.21 4.03 3.84 3.46 4.48 3.65 C0814(1) 4.30 5.19 11.32 11.07 6.58 11.61 4.70 C1218(1) 11.20 11.50 14.44 14.40 15.44 7.20 11.52 C1218(2) 10.30 11.03 14.22 14.02 10.89 14.76 10.43 C1716(1) 9.20 9.30 11.92 11.90 9.32 4.96 9.30 C2114(1) 15.80 14.86 25.42 24.88 22.93 23.33 16.87 C2114(2) 11.50 13.80 17.20 17.00 13.80 16.30 13.90 C2418(1) 20.90 24.60 31.80 31.40 23.40 26.90 24.60 表 2 各处理方式误差汇总
Table 2 Summary of errors of each processing method
Roberts Sobel Prewitt Canny Log Threshold segmentation 7.36% 56.21% 53.86% 26.35% 61.92% 7.97% 表 3 外窗气密性能等级现场判定结果对比
Table 3 Comparison of site judgment results of airtightness performance grade of windows
Windows Experimental result Model result Relative error Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h)) Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h)) C0923 7.00 3.38 7.32 3.54 4.60% C0918 6.00 3.70 5.76 3.55 3.94% C1823 17.00 4.11 18.28 4.41 7.41% C0910 4.00 4.44 3.93 4.36 1.69% C0623 5.00 3.62 5.13 3.72 2.69% C0924 7.00 3.24 7.11 3.29 1.62% C1523 12.00 3.48 13.06 3.78 8.76% C1824 14.00 3.24 15.08 3.49 7.77% C1822 17.00 4.29 17.74 4.48 4.41% C1514 8.00 3.81 8.10 3.86 1.22% -
[1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm China Association of Building Energy Efficiency. China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm
[2] 郭兴忠, 杨闯, 张超, 等. 节能门窗热工性能对建筑能耗影响的模拟研究[J]. 建筑材料学报, 2014, 17(2): 261-265, 297. DOI: 10.3969/j.issn.1007-9629.2014.02.014 GUO Xingzhong, YANG Chuang, ZHNAG Chao, et al. Simulation on thermal performance of energy-saving windows and door and its influence on building energy consumption[J]. Journal of Building Materials, 2014, 17(2): 261-265, 297. DOI: 10.3969/j.issn.1007-9629.2014.02.014
[3] 中国建筑科学研究院. 建筑幕墙、门窗通用技术条件: GB/T 31433-2015[S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. China Academy of Building Research. General specification for building curtain wall, windows and doors: GB/T 31433-2015[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Standardization Administration of the People's Republic of China.
[4] 中国建筑科学研究院有限公司. 建筑外门窗气密、水密、抗风压性能检测方法: GB/T 7106-2019[S]. 国家市场监督管理总局, 国家标准化管理委员会. China Academy of Building Research. Test methods of air permeability, watertightness, wind load resistance performance for building external windows and doors: GB/T 7106-2019[S]. State Administration for Market Regulation; Standardization Administration.
[5] 陈航. 建筑门窗三性检测方法及常见问题分析[J]. 建材发展导向, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm CHEN Hang. Building doors and windows following detection method and the analysis of common problems [J]. Development Guide to Building Materials, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm
[6] 史国权. 建筑门窗工程检测方法及结果分析[J]. 建材与装饰, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm SHI Guoquan. Testing methods and result analysis of building doors and windows engineering[J]. Construction Materials & Decoration, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm
[7] Figuli L, Papan D, Z Papánová, et al. Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact[J]. Smart Structures and Systems, 2021, 27(2): 365-378.
[8] Mohan A, Poobal S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, 57(2): 787-798.
[9] Gehri N, J Mata-Falcón, Kaufmann W. Automated crack detection and measurement based on digital image correlation[J]. Construction and Building Materials, 2020, 256: 119383. DOI: 10.1016/j.conbuildmat.2020.119383
[10] Freitas S S D, Freitas V P D, Barreira E. Detection of fade plaster detachments using infrared thermography – a nondestructive technique[J]. Construction & Building Materials, 2014, 70: 80-87.
[11] Ibarra-Castanedo C, Sfarra S, Klein M, et al. Solar loading thermography: time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures[J]. Infrared Physics & Technology, 2017, 82: 56-74.
[12] Thusyanthan I, Blower T, Cleverly W. Innovative uses of thermal imaging in civil engineering[C]//Proceedings of the Institution of Civil Engineers, 2017, 170(CE2): 81-87.
[13] Ostańska Anna. Thermal imaging for detection of defects in envelopes of buildings in use: qualitative and quantitative analysis of building energy performance[J]. Periodica Polytechnica Civil Engineering, 2018, 62(4): 939-946.
[14] Pan N H, Tsai C H, Chen K Y, et al. Enhancement of external wall decoration material for the building in safety inspection method[J]. Journal of Civil Engineering and Management, 2020, 26: 216-226.
[15] Tiberio A J, Branchi P. A study of air leakage in residential buildings[C]//2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE) of IEEE, 2013: 1-4.
[16] LI X, ZHOU W, LIN D. Research on air infiltration predictive models for residential building at different pressure[J]. Building Simulation, 2020: 1-12.
[17] 魏林滨, 李震, 李迪, 等. 被动式房屋气密性测试方法分析与实践应用[J]. 建设科技, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm WEI Linbin, LI Zhen, LI Di, et al. Passive building air tightness test method analysis and practice application[J]. Construction Science and Technology, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm
[18] Ziou D, Tabbone S. Edge detection techniques-an overview[J]. Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 1998, 8: 537-559.
[19] 任浩, 谢磊, 陈惠芳. 基于动态边缘检测的图像锐化算法[J]. 杭州电子科技大学学报, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm REN Hao, XIE Lei, CHEN Huifang. Image sharpening algorithm based on dynamic edge detection[J]. Journal of Hangzhou Dianzi University, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm
[20] JIANG M. Edge enhancement and noise suppression for infrared image based on feature analysis[J]. Infrared Physics & Technology, 2018, 91: 142-152.
[21] Kim C, Choi J S, Jang H, et al. Automatic detection of linear thermal bridges from infrared thermal images using neural network[J]. Applied Sciences, 2021, 11(3): 931.
[22] 张玲玲, 许廒, 张继冉, 等. 基于红外图像处理技术的建筑外窗缺陷面积计算研究[J]. 红外技术, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c ZHANG Lingling, XU Ao, ZHANG Jiran, et al. Research on calculation of defect area of building exterior windows based on infrared image processing technology[J]. Infrared Technology, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c
[23] 潘振, 刘伟, 陈刚, 等. 建筑外窗自然状态渗透能耗测试设备研制[J]. 新型建筑材料, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm PAN ZHEN, LIU Wei, CHEN Gang, et al. Development of testing equipment for permeation energy consumption building outer window in natural state[J]. New Building Materials, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm
[24] 季永明, 端木琳. 某近零能耗建筑空气渗透量数值分析[J]. 建筑科学, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm JI Yongming, DUAN Mulin. Air infiltration rate simulation of typical zero energy building[J]. Building Science, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm
[25] Mijwel M M, Esen A, Shamil A. Overview of neural networks[J]. Computer Engineering Techniques Department, 2019(1): 1-2.
[26] 张龙, 董峰, 傅雨田. 基于神经网络的红外图像非均匀性校正[J]. 红外技术, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011 ZHANG Long, DONG Feng, FU Yutian. Non-uniformity correction for infrared image using neural [J]. Infrared Technology, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
[27] 王晓辉, 刘静蕾, 边会娟, 等. 基于改进BP神经网络的室内环境热舒适度预测与分析[J]. 控制工程, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm WANG Xiaohui, LIU Jinglei, BIAN Huijuan, et al. Prediction and analysis of indoor environment thermal comfort based on improved BP neural network[J]. Control Engineering of China, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm
[28] ZHANG X Y, YIN F, ZHANG Y M, et al. Drawing and recognizing Chinese characters with recurrent neural network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 849-862.
-
期刊类型引用(4)
1. 李环宇,冯国会,刘馨,蒲毅,王涵. 基于红外热成像的围护结构热工性能定量检测方法研究进展. 太阳能学报. 2024(07): 427-437 . 百度学术
2. 付相球,张喜臣,王晓军,戴红亮,刘宁,赵倩. 建筑外门窗气密性能研究综述. 建筑科学. 2024(12): 107-115+290 . 百度学术
3. 张玲玲,张继冉,许廒,任攀攀,丁立斌. 基于红外图像处理的建筑外窗缺陷能耗分析研究. 红外技术. 2023(09): 996-1004 . 本站查看
4. 王丽娟. 住宅小区外墙渗漏因素及应对措施探析. 江西建材. 2023(09): 259-260+263 . 百度学术
其他类型引用(0)