便携式红外体温计设计与温度补偿技术研究

杨清志, 王玉香, 徐宏

杨清志, 王玉香, 徐宏. 便携式红外体温计设计与温度补偿技术研究[J]. 红外技术, 2021, 43(6): 597-606.
引用本文: 杨清志, 王玉香, 徐宏. 便携式红外体温计设计与温度补偿技术研究[J]. 红外技术, 2021, 43(6): 597-606.
YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606.
Citation: YANG Qingzhi, WANG Yuxiang, XU Hong. Design of Portable Infrared thermometer and Temperature Compensation Technology[J]. Infrared Technology , 2021, 43(6): 597-606.

便携式红外体温计设计与温度补偿技术研究

基金项目: 

安徽省教育厅质量工程项目 2020kfkc335

亳州职业技术学院重点科研项目 BKY2004

详细信息
    作者简介:

    杨清志(1974-),男,副教授,硕士,主要从事自动化与传感器等方面研究。E-mail:bzyqz@126.com

  • 中图分类号: R318.6, TP212.3

Design of Portable Infrared thermometer and Temperature Compensation Technology

  • 摘要: 红外体温计因安全卫生、测量高效而备受青睐,发展迅速。但目前市场上的红外体温计存在测量误差大、成本高等缺点,应用受到限制。鉴于此,首先分析了影响红外体温计测量精度的各种因素,并给出具体影响程度的计算结果,然后利用STM32F407单片机作为控制核心,通过MLX90615红外传感器、DS18B20集成温度传感器、HC-SR04超声传感器等获取信息,设计了一种面向医院、家庭等的廉价、可靠的便携式红外体温计,并给出温度补偿方法,最后通过实验测试验证了系统设计的可靠性。测试结果表明,最大综合误差不超过0.15℃,具有一定的实用价值与参考价值。
    Abstract: Infrared thermometers are popular because of their safety, hygiene, and high efficiency. However, commercial infrared thermometers have large measurement errors and high cost, so their application is limited. Considering this, this paper first analyzes various factors that affect the measurement accuracy of an infrared thermometer and gives the calculation results of the specific influence degree. Then, using STM32F407 MCU as the control core, an MLX90615 infrared sensor, DS18B20 integrated temperature sensor, and HC-SR04 ultrasonic sensor to obtain information, a cheap and reliable portable infrared thermometer for hospitals and families is designed, and a method of temperature compensation is provided. Finally, the reliability of the system design was verified by testing. The test results show that the maximum comprehensive error is less than 0.15℃, which has definite practical value and reference value.
  • 图  1   红外体温计接收辐射能量示意图

    Figure  1.   Schematic diagram of infrared thermometer receiving radiation energy

    图  2   红外式体温计架构

    Figure  2.   The structure of infrared thermometer

    图  3   单片机及其外围电路

    Figure  3.   MCU and its peripheral circuit

    图  4   MLX90615ESG-DAA基本精度

    Figure  4.   The basic accuracy of MLX90615ESG-DAA

    图  5   接口电路

    Figure  5.   The interface circuit

    图  6   LCD电路

    Figure  6.   The LCD circuit

    图  7   电源电路

    Figure  7.   The power circuit

    图  8   额温随环境温度变化关系

    Figure  8.   The relationship between forehead temperature and ambient temperature

    图  9   额温与体温对应关系

    Figure  9.   The relationship between forehead temperature and body temperature

    图  10   额温与探测距离关系

    Figure  10.   The relationship between frontal temperature and detection range

    图  11   光学分辨率示意图

    Figure  11.   Schematic diagram of optical resolution

    图  12   BP网络拓扑结构

    Figure  12.   BP network topology

    图  13   系统主程序流程

    Figure  13.   Flowchart of main program

    表  1   距离补偿测试结果

    Table  1   The test results of distance compensation

    Distance/cm A(Standard value: 36.70℃) B(Standard value: 36.87℃) C(Standard value: 37.70℃)
    Measured value /℃ Error/℃ Measured value /℃ Error /℃ Measured value /℃ Error /℃
    0.2 36.71 0.01 36.89 0.02 37.71 0.01
    0.5 36.70 0.00 36.88 0.01 37.71 0.01
    1.0 36.70 0.00 36.87 0.00 37.69 -0.01
    2.0 36.70 0.00 36.87 0.00 37.71 0.01
    3.0 36.68 -0.02 36.88 0.01 37.70 0.00
    3.5 36.67 -0.03 36.86 -0.01 37.72 0.02
    4.0 36.64 -0.06 36.85 -0.02 37.74 0.04
    4.5 36.58 -0.12 36.83 -0.04 37.77 0.07
    5.0 36.54 -0.16 36.78 -0.09 37.81 0.11
    下载: 导出CSV

    表  2   环境温度补偿测试结果

    Table  2   The test results of ambient temperature compensation  

    Ambient temperature A B C
    Error Measured value Standard value Error Measured value Standard value Error Measured value Standard value
    12(Morning) -0.02 36.41 36.51 -0.10 36.67 36.70 -0.03 37.48 37.50
    21(Noon) 0.01 36.67 36.70 -0.03 36.82 36.80 0.02 37.71 37.70
    17(Afternoon) 0.05 36.81 36.87 -0.06 37.00 36.68 0.02 37.76 37.71
    下载: 导出CSV

    表  3   综合测试结果

    Table  3   Comprehensive test results

    Environmental conditions Measurement object Measured value /℃ Standard value /℃ Error /℃ Alarm or not
    In the morning, no wind, no sunshine; ambient temperature: 10℃ A 36.39 36.51 -0.13 No
    B 36.61 36.60 0.01 No
    C 37.40 37.50 -0.10 Yes
    At noon, no wind, sunny; ambient temperature: 25℃ A 36.72 36.70 0.02 No
    B 36.92 36.80 0.12 No
    C 37.85 37.70 0.15 Yes
    At noon, windy and shady; ambient temperature: 22℃ A 36.68 36.70 -0.02 No
    B 36.80 36.80 0.00 No
    C 37.69 37.70 -0.01 Yes
    下载: 导出CSV
  • [1] 杨清志, 张喜红. 基于Si7053的智能数字体温计的设计[J]. 黑河学院学报, 2016, 7(3): 123-125. DOI: 10.3969/j.issn.1674-9499.2016.03.033

    YANG Qingzhi, ZHANG Xihong. Design of a intelligent digital thermometer based on Si7053[J]. Journal of Heihe University, 2016, 7(3): 123-125. DOI: 10.3969/j.issn.1674-9499.2016.03.033

    [2] 郑英, 李香菊, 王迷迷, 等. 基于NTC和ZigBee技术的病房病人体温监测系统设计[J]. 现代电子技术, 2016, 39(4): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201604008.htm

    ZHENG Ying, LI Xiangju, WANG Mimi, et al. Design of patients temperature monitoring system based on NTC and ZigBee technology[J]. Modern Electronics Technique, 2016, 39(4): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201604008.htm

    [3] 赵志刚, 王鑫, 彭廷海, 等. 国外中长波双波段红外成像技术的发展及应用[J]. 红外技术, 2020, 42(4): 312-319. http://hwjs.nvir.cn/article/id/hwjs202004002

    ZHAO Zhigang, WANG Xin, PENG Tinghai, et al. Status Quo and application of middle and long wave dual-band infrared imaging technologies in occident[J]. Infrared Technology, 2020, 42(4): 312-319. http://hwjs.nvir.cn/article/id/hwjs202004002

    [4]

    Sivanandam S, Anburajan M, Venkatraman B, et al. Medical thermography: a diagnostic approach for type 2 diabetes on non-contact infrared thermal imaging[J]. Endocrine, 2012, 42(2): 343-351. DOI: 10.1007/s12020-012-9645-8

    [5] 袁浩期, 李杨, 王俊影, 等. 基于红外热像的行人面部温度高精度检测技术[J]. 红外技术, 2019, 41(12): 1181-1186. http://hwjs.nvir.cn/article/id/hwjs201912015

    YUAN Haoqi, LI Yang, WANG Junying, et al. High precision detection technology of pedestrian face temperature based on infrared thermal imaging[J]. Infrared Technology, 2019, 41(12): 1181-1186. http://hwjs.nvir.cn/article/id/hwjs201912015

    [6] 丁岩. 红外体温测量管理系统的设计[D]. 呼和浩特: 内蒙古大学, 2017.

    DING Yan. Design of Infrared Temperature Measurement and Management System[D]. Hohhot: Inner Mongolia University, 2017.

    [7] 陈昊. 红外耳温计设计方案与校准结果不确定度评定的研究[D]. 保定: 河北大学, 2014.

    CHEN Hao. Design of Infrared Ear Thermometer and the Evaluation of the Uncertainty of the Results Calibration[D]. Baoding: Hebei University, 2014.

    [8] 孙成, 潘明强, 王阳俊, 等. 噪声对红外测温性能的影响研究[J]. 红外技术, 2019, 41(4): 370-376. http://hwjs.nvir.cn/article/id/hwjs201904012

    SUN Cheng, PAN Mingqiang, WANG Yangjun, et al. Influence of noise on infrared temperature measurement performance[J]. Infrared Technology, 2019, 41(4): 370-376. http://hwjs.nvir.cn/article/id/hwjs201904012

    [9]

    Melexis Co. Digital plug & play infrared thermometer in ultra small TO-Can[EB/OL] https://www.melexis.com/en/product/MLX90615/-Digital-Plug-Play-Infrared-Thermometer-Ultra-Small-TO-Can.

    [10] 葛泽勋. 医用红外测温仪及其关键技术研究[D]. 长春: 长春理工大学, 2019.

    GE Zexun. Research on Medical Infrared Thermometer and the Key Technology[D]. Changchun: Changchun University of Science and Technology, 2019.

    [11] 杨清志, 蒋伟, 许春雷. 基于多智能体的交直流混合微电网监控设计与分层控制研究[J]. 高电压技术, 2020, 46(7): 2327-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202007009.htm

    YANG Qingzhi, JIANG Wei, XU Chunlei. Monitoring design and research on hierarchical control of AC/DC hybrid microgrid based on multi-agent[J]. High Voltage Engineering, 2020, 46 (7): 2327-2339. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202007009.htm

    [12] 康慧雯. 基于热像测温原理的体温筛检关键技术的研究[D]. 天津: 天津大学, 2011.

    KANG Huiwen. Based on thermal imaging temperature measuring principle body technology screening key technology research[D]. Tianjin: Tianjin University, 2011.

    [13] 杜玉玺, 胡振琪, 葛运航, 等. 距离对不同强度热源红外测温影响及补偿[J]. 红外技术, 2019, 41(10): 976-981. http://hwjs.nvir.cn/article/id/hwjs201910014

    DU Yuxi, HU Zhenqi, GE Yunhang, et al. Distance influence and compensation of infrared temperature measurement with different intensity heat sources[J]. Infrared Technology, 2019, 41(10): 976-981. http://hwjs.nvir.cn/article/id/hwjs201910014

    [14] 席剑辉, 姜瀚. 基于RBF网络的红外多光谱辐射温[J]. 红外技术, 2020, 42(10): 963-968. http://hwjs.nvir.cn/article/id/hwjs202010008

    XI Jianhui, JIANG Han. Infrared multispectral radiation-temperature measurement based on RBF network[J]. Infrared Technology, 2019, 41(10): 976-981. http://hwjs.nvir.cn/article/id/hwjs202010008

    [15] 白友龙. 高精度红外体温计的设计与实现[D]. 锦州: 辽宁工业大学, 2014.

    BAI Youlong. Design and Implementation of High-precision Infrared Thermometer[D]. Jinzhou: Liaoning University of Technology, 2014.

    [16] 魏坦勋. 人体非接触测温综合误差补偿技术的研究与实现[D]. 杭州: 杭州电子科技大学, 2013.

    WEI Tanxun. Research and Implementation of Comprehensive Error Compensation Technology Non-Contact Temperature Measurement[D]. Hangzhou: Hangzhou Dianzi University, 2013.

    [17] 苏建奎, 桂星雨. 医用红外体温测量仪的现状与发展[J]. 医疗卫生装备, 2016, 37(1): 110-112, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201601039.htm

    SU Jiankui, GUI Xingyu. Present status and trend of medical infrared temperature measuring instrument[J]. Chinese Medical Equipment Journal, 2016, 37(1): 110-112, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS201601039.htm

  • 期刊类型引用(9)

    1. 禹鑫鹏,贺庆,刘佳镕,王林瑶. 红外体温检测手环的温度补偿研究. 工业计量. 2024(01): 1-4 . 百度学术
    2. 王静. 红外耳温计测量结果的不确定度评定. 品牌与标准化. 2024(03): 254-256 . 百度学术
    3. 吴珊. 海峡两岸红外及电子体温计标准比对分析. 中国标准化. 2024(15): 212-217 . 百度学术
    4. 张新影. 分析测量人体温度用温度计的选择和使用. 科技资讯. 2023(09): 226-229 . 百度学术
    5. 陈镔. 一种新型的双模式红外传感器热电元件温度测量方法. 光电子·激光. 2023(10): 1068-1074 . 百度学术
    6. 张杰,朱杨冕,王飞鹏,游皓宇. 图书馆防疫实时监测系统. 电子制作. 2023(22): 73-77 . 百度学术
    7. 张晓娟,付杨涛,成晋军. 一种高精度的基于红外技术的测温系统设计. 山西电子技术. 2022(01): 13-15 . 百度学术
    8. 齐曼,胡乃瑞,安天洋,高唯峰. 基于STM32的口罩识别及无接触测温系统的实现. 工业控制计算机. 2022(03): 128-130 . 百度学术
    9. 刘琦,张济国. 辐射测温设备性能影响因素及温度补偿/修正方法的研究. 中国安全防范技术与应用. 2022(Z2): 35-44 . 百度学术

    其他类型引用(1)

图(13)  /  表(3)
计量
  • 文章访问数:  1019
  • HTML全文浏览量:  196
  • PDF下载量:  96
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-01-11
  • 刊出日期:  2021-06-19

目录

    /

    返回文章
    返回