Infrared and Visible Light Dual-Mode Seeker Optical System Design
-
摘要: 为了提升导弹在复杂环境下的寻的制导能力,设计了一种红外与可见光双模式导引头光学系统。该方案中采用分光镜透射红外光反射可见光,使结构布局更加紧凑,实现红外与可见光共口径,同时配合红外材料选取,实现光学被动消热差设计。中红外模式视场角3°×2.3°,可见光模式视场角5°×4°,工作温度20℃条件下,双模式在截止频率处,MTF(Modulation Transfer Function)值均大于0.4。红外与可见光双模式光学系统适合应用于复杂环境的导弹制导,对温度有良好的适应性,具有较好的成像质量,满足系统的性能要求。Abstract: A folding anti-infrared and visible-light double-pattern optical guidance system was designed to improve the guidance of a missile in complex environments. In this scheme, the system layout for infrared and visible light is produced by spectroscopic optical visible light reflection, realizing dual-mode infrared and visible light, and optical passive heat reduction is implemented. In the mid-infrared mode, the field of view of the infrared mode is 3°×2.3°, the angle of view of the visible light mode is 5°×4°, the working temperature is 20℃, and the dual mode MTF is greater than 0.4 in the cup-frequency. Infrared and visible-light dual-mode optical systems are suitable for missile guidance in complex environments, have good adaptability to temperature, and have good imaging quality and performance.
-
Keywords:
- optical systems /
- visible light /
- medium wave infrared /
- heat separation
-
0. 引言
国际间纷争摩擦不断,武器装备是国防的重中之重,各种光学镜头、武器导引头作为各种大型装备的“眼睛”更是不容忽视,其主要作用是完成对目标的探测、识别、跟踪等功能。导引头采用的制导方式主要包括:半主动雷达制导、红外成像制导[1]、电视探测制导等[2]。但随着战场环境越来越复杂,对抗形式的升级,单一的制导模式已经无法满足使用要求。红外与可见光双模制导,可以充分发挥各个子模式的优势,且提高复合抗干扰能力。光具有波粒二象性,可见光的波长较短,主要表现出粒子性,所以可见光分辨率较高,有利于制导精度的提升,在光线充足,天气较好时可以发挥其优势;红外光主要表现为波动性,所以其穿透性较强,有利于在夜间和能见度较低的天气下工作[3]。
本文以某导弹红外与可见光双模式导引头为研究对象,采取光学被动无热化,设计并优化光学系统,并使用MTF曲线、点列图、畸变图进行像质评价。
1. 总体方案
红外与可见光系统采用共口径光学系统,其能够避免纯反射式系统视场小的问题,同时具有结构紧凑等优点[4]。光学系统如图 1所示,包括红外光学系统和可见光光学系统两部分。共8片透镜,1片分光镜以及1片反射镜,其中反射镜材料为微晶玻璃,表面镀全波段反射膜,分光镜材料为硫化锌,表面镀分光膜,反射可见光,透射长波红外。光学系统与结构几何尺寸为230 mm×110 mm×150 mm,具体参数如表 1、表 2所示。
表 1 红外光学系统参数Table 1. Parameters of IR systemFOV ≥3°×2.3° Focus length 90 mm F# ≤1.1 Entrance pupil diameter ≥83 mm 表 2 可见光光学系统参数Table 2. Parameters of visible systemFOV ≥5°×4° Focus length 101 mm F# ≤5 Entrance pupil diameter ≥20 mm 2. 光学系统设计
2.1 红外光学系统设计
由于红外透镜材料的温度折射率系数较大,对温度较敏感[5],且导引头工作温度范围较大,会造成透镜尺寸、折射率以及透镜间隔的变化,所以需要对系统进行无热化处理。常用的无热化处理方法有3种:被动机械式无热化、主动机电式无热化和被动光学无热化[6],由于前两种方法会使结构变得复杂,本红外光学系统采用被动光学无热化设计,在-45℃~+55℃温度范围内保证成像质量。红外探测器选用15 μm,320×240焦平面非制冷型探测器,工作波段为8~12 μm长波红外,并要求装调后MTF大于0.32。
红外系统主镜材料为锗,次镜材料为单晶硅,其余红外镜片为硫化锌,其主要优点是这些材料有较高的透射率以及成熟的制造工艺。为避免热胀冷缩作用对系统产生较大影响,镜筒材料选用膨胀系数较低的殷钢材料。利用Code V软件进行设计优化后,红外光学系统如图 2所示。
2.1.1 红外系统像质评价
红外光学系统设计优化后在-45℃、+20℃、+55℃的调制传递函数(Modulation Transfer Function,MTF)如图 3所示。从图中可以看出,在-45℃、+20℃、+55℃温度下,均具有较高的传递函数,且相对于+20℃的MTF曲线,在-45℃和+55℃温度下的MTF曲线无明显变化,说明系统具有良好的温度适应性,满足温度要求。在截止频率35 cycle/mm处,各个视场的MTF值均在0.4以上,接近衍射极限,具备良好的成像质量,满足总体所提成像要求。
+20℃温度时,各视场的点列图如图 4所示,点列图中点的分布可以近似地代表像点的能量分布,利用这些点的密集程度能够衡量光学系统成像质量的好坏[7]。从图中可知,最大RMS(Root Mean Square)弥散斑直径小于探测器的像元尺寸15 μm,各视场范围内光斑尺寸基本一致,全视场内光斑分布均匀,表明此光学系统可以很好地聚焦成像。
2.1.2 公差分析
导引头红外系统处理器公差主要考虑技术指标以及加工能力,本红外系统选择在35 cycles/mm空间频率处,以允许下降量为准则制定光学系统误差,红外光学系统公差分析如图 5所示。
由图 5公差分析图可知,在截止频率处,均有超过90%的概率装调至MTF值大于0.38,满足设计要求。
2.2 可见光光学系统设计
可见光系统探测器选用像元尺寸6.8 μm,1280×1024类型的焦平面探测器,工作波段为480~680 nm。要求5 km高度观察幅宽435 m×350 m,可分辨40 cm;1 km高度观察幅宽87 m×67 m,可分辨10 cm;100 m高度观察幅宽4.5 m×3.4 m,可分辨5 cm。透镜材料选用k9玻璃,可见光光学系统如图 6所示。
2.2.1 可见光系统像质评价
可见光光学系统设计优化后,在-20℃、+20℃、+40℃的调制传递函数如图 7所示。从图可知,在+20℃、+40℃温度下,在截止频率70 cycle/mm处,MTF值均大于0.4,在-20℃温度下,截止频率略低,为0.2左右。综上所知,相对于高温,可见光系统对低温更敏感,但满足成像要求。
2.2.2 畸变曲线
图 8的畸变曲线表明,在全视场范围内畸变小于3%,满足总体所提的设计要求。
3. 结论
设计了一种满足技术要求的红外与可见光双模式导引头光学系统,分别对两个子系统分别进行温度适应性分析。红外模式采用被动光学无热化技术,具有良好的温度适应性。红外模式和可见光模式在工作温度范围内都满足成像要求。分光镜实现了分光效果,使整体结构更加小巧、紧凑,可为弹体保留更多空间。此外,该系统中所用材料均为常用材料,加工工艺成熟,便于装调,具有一定的参考价值。
-
表 1 红外光学系统参数
Table 1 Parameters of IR system
FOV ≥3°×2.3° Focus length 90 mm F# ≤1.1 Entrance pupil diameter ≥83 mm 表 2 可见光光学系统参数
Table 2 Parameters of visible system
FOV ≥5°×4° Focus length 101 mm F# ≤5 Entrance pupil diameter ≥20 mm -
[1] 陈玉波, 陈乐, 曲长征, 等. 红外制导技术在精确打击武器中的应用[J]. 红外与激光工程, 2007(S2): 35-38. CHEN Yubo, CHEN Le, QU Changzheng, et al. Application of infrared guidance technology in precision strike weapons[J]. Infrared and Laser, Engineering, 2007(S2): 35-38.
[2] 陈蕾, 姜允东, 张峰, 等. 烟雾干扰下电视导引头作用距离研究[J]. 弹箭与制导学报, 2013, 33(1): 17-18, 24. CHEN Lei, JIANG Yundong, ZHANG Feng, et al. Study on the operating distance of TV seeker under smoke interference[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(1): 17-18, 24.
[3] 陈咸志, 任钢, 罗镇宝, 等. 先进光电导引头应用技术研究[J]. 红外与激光工程, 2021, 50(9): 178-185. CHEN Xianzhi, REN Gang, LUO Zhenbao, et al. Research on application technology of advanced optoelectronic seeker[J]. Infrared and Laser Engineering, 2021, 50(9): 178-185.
[4] 周晓斌, 孙浩, 原琦, 等. 一种折反式红外/激光复合导引头光学系统设计[J]. 应用光学, 2019, 40(6): 987-992. ZHOU Xiaobin, SUN Hao, YUAN Qi, et al. Design of an optical system for a fold-trans infrared/laser composite seeker[J]. Journal of Applied Optics, 2019, 40(6): 987-992.
[5] 朱广亮, 杨林, 刘灿. 制冷型中波红外光学系统无热化设计[J]. 光学与光电技术, 2021, 19(2): 98-102. ZHU Guangliang, YANG Lin, LIU Can, et al. Cooling medium wave infrared optical system without thermal design[J]. Optics & Optoelectronic Technology, 2021, 19(2): 98-102.
[6] 周晓斌, 张衡, 文江华, 等. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839. http://hwjs.nvir.cn/article/id/236b81af-2c72-46e2-9cd4-883b6a6de4d2 ZHOU Xiaobin, ZHANG Heng, JIANG Wenhua, et al. Long wave infrared optical system hybrid passive thermal design[J]. Infrared Technology, 2021, 43(9): 836-839. http://hwjs.nvir.cn/article/id/236b81af-2c72-46e2-9cd4-883b6a6de4d2
[7] 贺祥清, 廖小军, 段媛, 等. 激光/红外共孔径无热化紧凑型光学系统设计[J]. 红外技术, 2020, 42(5): 461-467. http://hwjs.nvir.cn/article/id/hwjs202005008 HE Xiangqing, LIAO Xiaojun, DUAN Yuan, et al. Laser/infrared common aperture non-thermal compact optical system design[J]. Infrared Technology, 2020, 42(5): 461-467. http://hwjs.nvir.cn/article/id/hwjs202005008
-
期刊类型引用(1)
1. 周佳乐,宋敏敏,雷昊,刘建旭,曹卫卫,施瑶瑶,董大兴,刘友文. 基于YOLO与图像修复的仿真场景等效构设研究. 激光与红外. 2025(01): 145-154 . 百度学术
其他类型引用(1)