长波红外光学系统混合被动无热化设计

周晓斌, 张衡, 文江华, 吴妍, 刘召庆, 张向明, 金明鑫

周晓斌, 张衡, 文江华, 吴妍, 刘召庆, 张向明, 金明鑫. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839.
引用本文: 周晓斌, 张衡, 文江华, 吴妍, 刘召庆, 张向明, 金明鑫. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839.
ZHOU Xiaobin, ZHANG Heng, WEN Jianghua, WU Yan, LIU Zhaoqing, ZHANG Xiangming, JIN Mingxin. LWIR Optical System Design by Passive Athermalization[J]. Infrared Technology , 2021, 43(9): 836-839.
Citation: ZHOU Xiaobin, ZHANG Heng, WEN Jianghua, WU Yan, LIU Zhaoqing, ZHANG Xiangming, JIN Mingxin. LWIR Optical System Design by Passive Athermalization[J]. Infrared Technology , 2021, 43(9): 836-839.

长波红外光学系统混合被动无热化设计

详细信息
    作者简介:

    周晓斌(1989-), 男, 陕西岐山人, 硕士研究生, 主要从事光学系统设计工作。E-mail: xbin205@163.com

  • 中图分类号: O439

LWIR Optical System Design by Passive Athermalization

  • 摘要: 结合光学被动无热化和机械被动无热化各自优势,提出一种低成本、高质量混合被动无热化方法。针对焦距75 mm,F/1的无热化镜头研制要求,分别利用光学被动无热化和混合被动无热化设计实现。对比发现,相较于传统的机械被动式无热化,混合无热化可减小补偿结构的体积和复杂性,从而有助于系统的小型化、轻量化;相较于光学被动无热化,在保证成像质量相当的情况下,可减小系统的体积和加工难度。从而证实,利用混合被动无热化技术可实现低成本、高质量的长波无热化镜头设计。
    Abstract: A low-cost and high-quality hybrid passive athermalization method for LWIR was proposed by combining passive optical and passive mechanical athermalization. An athermalization optical system with a focal length of 75 mm and F/1 was designed using passive optical and hybrid passive athermalization. Compared with traditional passive mechanical athermalization, the volume and complexity of the thermal compensation structure can be reduced using hybrid passive athermalization. In addition, the proposed method decreases the volume and weight of the system. Compared with passive optical athermalization, hybrid passive athermalization can reduce the volume and processing difficulty when the imaging quality is the same. Thus, the propose method can be used to achieve a low-cost, high-quality, long-wave athermalization system.
  • 随着科技的发展,激光技术不仅在测距、遥感、通信等方面得到广泛的应用,而且在军事领域得到各国的重视,各类激光武器相继推出,例如激光制导武器、激光雷达等。激光近感探测根据激光束来感知目标,通过目标的回波信号来确定目标的距离和方位,其特点是方向性强、探测精度高、抗电磁干扰能力突出。战场环境中,烟雾对激光有散射和吸收的作用,从而引起能量的衰减,出现虚警和漏警的问题[1]。因此,对于激光在烟雾环境下后向散射特性的研究十分重要。

    针对该问题,国内外科研人员进行了大量的研究。冯继青等[2]利用比尔朗伯定律和经典扩散方程建立烟雾环境下激光透过率模型,分析不同激光波长的透过率,但是该方法只考虑了单次散射,具有局限性。王红霞等[3]建立模型计算1.06 μm脉冲激光在烟雾中的传输,分析得到透过率与粒子粒径、烟雾厚度的关系,并且数值仿真脉冲激光在烟雾中的时间展宽特性。类成新等[4]研究激光在随机分布的烟尘团簇粒子的衰减特性,分析激光波长、入射角和粒子密度等参数对在烟尘中激光衰减的影响。李晓峰等[5]模拟研究在烟雾环境下不同波长激光在各个复折射率条件下的吸收、衰减和散射效应。Mori等[6]分析了非对称因子和Mie散射系数在烟雾中单次散射的变化特点。孟祥盛[7]利用偏振特性设计一种激光引信,该系统可以降低引信对烟雾后向散射信号的接收能力。陈慧敏等[8]建立烟雾后向散射模型,分析回波特性,将仿真结果与实测数值进行对比,验证模型的准确性。

    本文根据Mie散射理论,运用Monte Carlo方法建立脉冲激光近感探测模型,设置不同距离的大小目标,在无干扰和烟雾干扰条件下仿真905 nm脉冲激光,分析回波波形特征。从而为激光近感探测抗烟雾干扰提供理论基础和新的思路。

    战场上环境十分复杂,爆炸产生的烟雾粒子的主要成分是硫、碳、磷及其混合物。粒子的直径大小与爆炸强度、爆炸物成分和气候条件有关,爆炸产生的烟雾是瞬时的。烟雾也可以看作是气溶胶微粒,不仅爆炸会产生烟雾颗粒,人为释放烟雾气溶胶颗粒对制导武器系统是一种干扰[9]。本文选取发烟材料粒子的粒径大致分布在3~21 μm之间,烟雾粒子粒径分布如图 1所示。

    图  1  烟雾粒子粒径分布
    Figure  1.  Particle size distribution of smoke particles

    Mie散射理论可用于各个方向同性的球体,但是对于形状不规则的粒子同样适用。Mie散射理论是研究大气中的气溶胶微粒与辐射光发生散射的经典理论,其散射的强度与频率二次方成正比,方向性较明显。假设入射光的强度为I0,散射距离为l,则散射光强I[10]

    $$ I{\text{ = }}\frac{{{\lambda ^2}}}{{8{\pi ^2}}}\frac{{{i_1} + {i_2}}}{{{l^2}}}{I_0} $$ (1)

    式中:i1i2为强度函数,表达式为:

    $$ \left\{ \begin{array}{l} {i_1} = {s_1}(m, \theta , \alpha ) \times {s_1}^ * (m, \theta , \alpha ) \hfill \\ {i_2} = {s_2}(m, \theta , \alpha ) \times {s_2}^ * (m, \theta , \alpha ) \hfill \\ \end{array} \right. $$ (2)

    式中:m为散射体相对折射率;θ为散射角;s1s2为散射光振幅函数,s1s2分别为s1s2的共轭函数,散射体尺度参数α的表达式为[11]

    $$ \alpha {\text{ = }}\frac{{2\pi r}}{\lambda } $$ (3)

    式中:r是散射体的半径;λ为入射光波长。散射光振幅函数是无穷级数,可以取表达式的前10项来推演结果。因此,s1s2具体展开式为:

    $$ \left\{ \begin{array}{l} {s_1} = \sum\limits_{k = 1}^\infty {\frac{{2k + 1}}{{k(k + 1)}}[{a_k}{\pi _k} + {b_k}{\tau _k}]} \hfill \\ {s_2} = \sum\limits_{k = 1}^\infty {\frac{{2k + 1}}{{k(k + 1)}}[{a_k}{\tau _k} + {b_k}{\pi _k}]} \hfill \\ \end{array} \right. $$ (4)

    式中:akbk表示为Mie散射系数,该系数和散射体相对折射率m及散射体尺度参数α相关。

    烟雾粒子的散射系数Qsca和消光系数Qext的表达式分别为:

    $$ \left\{ \begin{array}{l} {Q_{{\rm{sca}}}} = \frac{2}{{{\alpha ^2}}}\sum\limits_{k = 1}^\infty {(2k + 1)({{\left| {{a_k}} \right|}^2} + {{\left| {{b_k}} \right|}^2})} \hfill \\ {Q_{{\rm{ext}}}} = \frac{2}{{{\alpha ^2}}}\sum\limits_{k = 1}^\infty {(2k + 1){{\rm{Re}}} ({a_k} + {b_k})} \hfill \\ \end{array} \right. $$ (5)

    不同相对折射率消光系数随尺度参数分布如图 2所示。

    图  2  不同相对折射率消光系数随尺度参数分布
    Figure  2.  Distribution of extinction coefficient of different relative refractive indices with scale parameter

    图 2所示,在选取的3种相对折射率下,消光系数随尺度参数的增加呈振荡衰减分布,最终趋于稳定值。相对折射率越大,震荡幅度越大。

    光子与烟雾粒子发生碰撞后各个方向的散射强度用散射相函数来表示,该函数表达式为:

    $$ P(\theta )=\frac{{\left|{S}_{1}(\theta )\right|}^{2}+{\left|{S}_{2}(\theta )\right|}^{2}}{{\displaystyle \sum _{k=1}^{\infty }(2k+1)({\left|{a}_{k}\right|}^{2}+{\left|{b}_{k}\right|}^{2})}} $$ (6)

    式中:S1(θ)、S2(θ)为散射光振幅函数。单个粒子散射相位函数与散射角关系如图 3所示。

    图  3  粒子散射相位函数与散射角关系
    Figure  3.  Relationship between scattering phase function and scattering angle of particles

    构建本模型的主要思路是将发射的脉冲激光分解成大量光子,根据Mie散射理论和Monte Carlo方法模拟光子在烟雾中的运动轨迹,统计出发生散射后的抵达光电探测器的光子。脉冲激光近感探测模型分为3部分:激光发射模型、激光在烟雾中的传输模型、激光接收模型。

    激光器发出的脉冲激光为高斯脉冲,功率表达式为:

    $$ P(t) = {P_0}\exp [ - \frac{{{{(t - \tau /2)}^2}}}{{{\tau ^2}/4\ln 2}}] $$ (7)

    式中:P0为峰值功率;τ为高斯脉冲持续的时间。光子的发射点选择在激光的束腰处,该位置的光子服从高斯分布,因此可得光子的位置为:

    $$ \left\{ \begin{array}{l} {x_t} = {\omega _0}{\xi _1} \hfill \\ {y_t} = {\omega _0}{\xi _2} \hfill \\ {z_t} = 0 \hfill \\ \end{array} \right. $$ (8)

    式中:$ {\omega _0} = {\left( {\lambda {z_0}/\pi } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} $为束腰半径;z0为瑞利长度;ξ1ξ2为标准正态分布随机数。光子起始发射方向为:

    $$ \left\{ \begin{array}{l} {u_{xt}} = \sin {\theta _t}\cos {\varphi _t} \hfill \\ {u_{yt}} = \sin {\theta _t}\sin {\varphi _t} \hfill \\ {u_{zt}} = \cos {\theta _t} \hfill \\ \end{array} \right. $$ (9)

    式中:${\theta _t} = \left| {\left( {{\theta _0}/2} \right) \cdot {\zeta _3}} \right|$为光子发射方向的天顶角;θ0为光束发散角;ξ3为标准正态分布随机数;ϕt=2π⋅ξ4为光子发射方向的方位角;ξ4为[0, 1]区间上的均匀分布随机数。

    光子在烟雾环境中会与烟雾粒子发生碰撞,碰撞后光子的能量会发生变化,其变化为[12]

    $$ {E_1}{\text{ = }}\frac{{{Q_{{\rm{sca}}}}}}{{{Q_{{\rm{ext}}}}}}{E_0} $$ (10)

    式中:E0为散射前光子能量;E1为散射后光子能量;QscaQext分别为烟雾粒子的散射系数和消光系数,具体表达式参考1.2节。碰撞后,光子的方向也发生变化,其变化为:

    $$ \left\{\begin{array}{l} u_{x s}^{\prime}=\frac{\sin \theta_{\text {sca }}}{\sqrt{1-u_{z s}^2}}\left(u_{x s} u_{z s} \cos \varphi_{\text {sca }}-u_{y s} \sin \varphi_{\text {sca }}\right)+u_{x s} \cos \theta_{\text {sca }} \\ u_{y s}^{\prime}=\frac{\sin \theta_{\text {sca }}}{\sqrt{1-u_{z s}^2}}\left(u_{y s} u_{z s} \cos \varphi_{\text {sca }}+u_{x s} \sin \varphi_{\text {sca }}\right)+u_{y s} \cos \theta_{\text {sca }} \\ u_{z s}^{\prime}=-\sin \theta_{\text {sca }} \cos \varphi_{\text {sca }} \sqrt{1-u_{z s}^2}+u_{z s} \cos \theta_{\text {sca }} \end{array}\right. $$ (11)

    式中:(uxs, uys, uzs)为散射前的光子移动方向;(uxs′, uys′, uzs′)为散射后的光子移动方向;ϕsca为[0, 2π]均匀分布的散射方位角;θsca为散射天顶角。光子与烟雾粒子发生碰撞后,如果没有消亡(能量小于阈值),则继续朝新的方向移动,移动的距离为:

    $$ \Delta s = - \frac{{\ln \varepsilon }}{{{\mu _t}}} $$ (12)

    式中:ε为[0, 1]区间上均匀分布的随机数;μt为烟雾衰减系数。

    光子离开烟雾环境后,朝接收端光学系统移动,有一定的比例被光电探测器接收。若光子进入接收窗口,则有[13]

    $$ {({x_{\rm{f}}} - {d_{{\rm{tr}}}})^2} + y_{\rm{f}}^2 \leqslant R_{\rm{r}}^2 $$ (13)

    式中:xfyf为光子最后一次散射的位置;dtr为收发光轴间距;Rr为接收端镜头半径。同时,光子在进入接收端光学系统时,入射角需要满足接收视场角要求:

    $$ {\theta _{{\rm{in}}}} \leqslant \frac{{{\theta _{{\rm{view}}}}}}{2} $$ (14)

    式中:θin为光子入射角;θview为接收视场角。若满足上式,光子可看作是被光电探测器成功接收,成为回波光子。

    烟雾环境下脉冲激光近感探测模型仿真流程图如图 4所示。大致流程如下:输入相关参数,对脉冲激光收发系统及烟雾模型初始化,光子与粒子发生碰撞后计算出光子的能量和位置,若光子在烟雾边界内且光子存活,重复碰撞直到光子进入光电探测器或者消失。当最后一个光子完成循环流程,计算出激光回波幅值。

    图  4  激光近感探测模型仿真流程
    Figure  4.  Simulation flowchart of laser proximity detection model

    选取大小两种目标,大目标为武装直升机和小型固定翼飞机。武装直升机机体长12.5 m,宽3.4 m,高3.94 m,主旋翼直径16.35 m;小型固定翼飞机长3.3 m,机身直径0.28 m,机翼长1.56 m,高为0.7 m。激光经过该目标的回波在一个周期内距离变化量大,实验中用反射率为0.9的白板代替;小目标为小尺寸靶弹,长为2 m,直径约为12 cm,激光经过该目标的回波在一个周期内距离变化量小,实验中用反射率为0.3的灰板代替。环境选取无干扰和烟雾干扰两种环境,仿真参数如表 1所示。

    表  1  仿真参数
    Table  1.  Simulation parameters
    Simulation parameters Value
    Laser wavelength/nm 905
    Emission pulse width/ns 30
    Emission beam divergence angle/mrad 5
    Receiving field of view angle/mrad 21
    Launching system diameter/mm 10
    Receiving lens diameter/mm 30
    Transmit-receive spacing/mm 35
    Simulated photon number 106
    Smoke particle size range/μm 3-18
    Smoke complex index 1.75-0.43i
    Target surface Bloom
    Target reflectance 0.3(small target)
    0.9(big target)
    Target distance/m 3(small target)
    7(big target)
    下载: 导出CSV 
    | 显示表格

    图 5可知,取小目标和大目标的距离分别为3 m和7 m,比较小目标和大目标,作用距离增大,探测信号回波的幅值减小,即发射接收系统与目标之间的距离和探测信号回波幅值呈负相关。两者探测回波的前沿上升速率呈递增趋势。

    图  5  无干扰时探测回波信号
    Figure  5.  Detection of echo signal without interference

    图 6可知,在烟雾干扰的环境下,对小目标和大目标取相同质量浓度的烟雾,探测回波信号和图 5相比有了明显的变化。脉冲激光会先探测到烟雾,因为烟雾对激光的反射率低,所以接收信号的幅值相对较小;当脉冲激光穿过烟雾到达目标表面,探测回波幅值相对较大,但是由于烟雾环境中粒子对激光的散射和吸收作用,引起能量的衰减,相比较于无干扰条件下,大小目标回波幅值有所降低。烟雾回波和目标回波的脉冲宽度相对于发射激光波形均有一定的展宽,但是前者的展宽程度大于后者。烟雾回波波形呈现前沿陡峭,后沿平缓的非对称特征,对于大目标而言,作用距离的增加,该特征变化得更加明显。因此激光近感探测系统在探测目标时,如果不加入任何抑制后向散射信号方法,烟雾后向散射信号和目标反射信号将会混合在一起,导致探测系统信噪比降低,进而造成系统虚警、漏警等一系列问题。

    图  6  烟雾干扰时探测回波信号
    Figure  6.  Detection of echo signal when smoke interferes

    本文根据Mie散射理论,运用Monte Carlo方法建立脉冲激光近感探测模型,设置参数,仿真得到大小目标在有无烟雾干扰条件下的回波,分析回波的波形特征,得到如下结论:

    ① 无干扰情况下,发射接收系统与目标之间的距离和探测信号回波幅值呈负相关,目标回波前沿的上升速率均呈递增趋势。

    ② 烟雾干扰情况下,脉冲激光会先探测到烟雾回波后探测到目标回波且烟雾回波幅值小于目标回波幅值。烟雾回波和目标回波的脉冲宽度相对于发射激光波形均有一定的展宽,但前者的展宽程度要大于后者,烟雾回波波形呈现前沿陡峭,后沿平缓的非对称特征,对于大目标而言,作用距离的增加,该特征变化得更加明显。

  • 图  1   光学被动无热化光学系统

    Figure  1.   Passive optical athermalization

    图  2   不同温度下不同视场特征频率处MTF

    Figure  2.   MTF versus field (parameter temperature) at 42 lp/mm

    图  3   混合被动无热化光学系统

    Figure  3.   Passive optical and mechanical athermalization

    图  4   不同温度下不同视场特征频率处MTF

    Figure  4.   MTF versus field (parameter temperature) at 42 lp/mm

    图  5   混合被动无热化结构示意图

    Figure  5.   Mechanical schematic diagram of hybrid passive athermalization

    表  1   设计指标要求

    Table  1   Requirements of design parameters

    Parameters Value
    Focal length 75 mm
    Wavelength 8μm~12 μm
    Temperature -40℃~+60℃
    F/# 1
    Field of view 5.86°×4.69°
    MTF@42 lp/mm On axis>0.4
    Out axis>0.3
    Detector 640×512,12 μm
    下载: 导出CSV

    表  2   不同温度下透镜3的相对位移

    Table  2   Shift of the lens 3 under different temperature

    Temperature /℃ -40 20 60
    Displacement/mm 0.052 0 0.034
    下载: 导出CSV

    表  3   仿真分析不同温度下透镜3的位移

    Table  3   Shift of lens 3 under different temperature by simulation

    Temperature /℃ -40 20 60
    Displacement /mm -0.053 0 0.032
    下载: 导出CSV

    表  4   两种无热化方案对比

    Table  4   Comparison of different athermalization methods

    Passive optical athermalization Passive optical and mechanical athermalization
    Weight 356 g 354 g
    Volume φ75 mm×80 mm φ75 mm×75 mm
    MTF On axis≥0.42 On axis≥0.46
    Out axis≥0.38 Out axis≥0.37
    Distortion ≤0.7% ≤1.3%
    Complexity 3 aspheric surface
    1 diffractive surface
    3 aspheric surface
    下载: 导出CSV
  • [1]

    Norbert Schuster. Passive arhermalization of doublets in 8-13 micron waveband[J]. SPIE, 2014, 924907: 1-17. http://www.researchgate.net/profile/Norbert_Schuster/publication/291301342_Passive_athermalization_of_doublets_in_8-13_micron_waveband/links/579867b208aec89db7bb43cb.pdf

    [2]

    Georage Curatu. Design and fabrication of low-cost thermal imaging optics using precision chalcogenide glass molding[J]. SPIE, 2008, 706008: 1-7. http://www.researchgate.net/profile/George_Curatu/publication/237298504_Design_and_fabrication_of_low-cost_thermal_imaging_optics_using_precision_chalcogenide_glass_molding/links/54d9293e0cf2970e4e7ae3d3.pdf

    [3] 安晓强, 王茜, 宋波. 大相对孔径紧凑型非制冷光学系统消热差设计[J]. 激光与红外, 2015, 45(7): 795-799. DOI: 10.3969/j.issn.1001-5078.2015.07.013

    AN Xiaoqiang, WANG Qian, SONG Bo. Athermal design of compact uncooled optical system with large relative aperture[J]. Laser & Infrared, 2015, 45(7): 795-799. DOI: 10.3969/j.issn.1001-5078.2015.07.013

    [4] 姜波, 吴越豪, 戴世勋, 等. 硫系玻璃在民用红外车载成像系统中的应用[J]. 红外与激光工程, 2015, 44(6): 1739-1745. DOI: 10.3969/j.issn.1007-2276.2015.06.011

    JIANG Bo, WU Yuehao, DAI Shixun, et al. Application of chalcogenide glasses in designing vehicle –mounted infrared imaging lens for civilian applications[J]. Infrared and Laser Engineering, 2015, 44(6): 1739-1745. DOI: 10.3969/j.issn.1007-2276.2015.06.011

    [5] 关英姿, 康立新. 长波红外非制冷光学系统设计[J]. 红外技术, 2008, 30(2): 79-82. DOI: 10.3969/j.issn.1001-8891.2008.02.005

    GUAN Yingzi, KANG Lixin. LWIR uncooled optical system design[J]. Infrared Technology, 2008, 30(2): 79-82. DOI: 10.3969/j.issn.1001-8891.2008.02.005

    [6] 杨加强, 彭晴晴, 刘琳, 等. 基于硫系玻璃的折衍混合光学无热化镜头设计[J]. 激光与红外, 2017, 47(2): 225-229. DOI: 10.3969/j.issn.1001-5078.2017.02.019

    YANG Jiaqiang, PENG Qingqing, LIU Lin, et al. Design of refractive/diffractive hybrid optical athermalization lens based on chalcogenide glass[J]. Laser & Infrared, 2017, 47(2): 225-229. DOI: 10.3969/j.issn.1001-5078.2017.02.019

    [7] 王学新, 焦明印. 光学被动式和机电式组合消热差方法的研究[J]. 应用光学, 2010, 31(3): 354-359. DOI: 10.3969/j.issn.1002-2082.2010.03.003

    WANG Xuexin, JIAO Mingyin. Combination of optical passive and mechanical-electrical athermalisation[J]. Journal of Applied Optics, 2010, 31(3): 354-359. DOI: 10.3969/j.issn.1002-2082.2010.03.003

    [8] 朱峰. 基于光机热集成的机械被动消热差红外镜头设计[D]. 昆明: 昆明理工大学, 2017.

    ZHU Feng. The design of mechanical passive athermal infrared lens based on the structure-thermal-optical integrated analysis[D]. Kunming: Kunming University of Science and Technology, 2017.

    [9] 马俊林, 邢妍, 高群, 等. 微小型滚仰式红外导引头光机轴系一体化设计[J]. 红外技术, 2021, 43(5): 411-416. http://hwjs.nvir.cn/article/id/397ca1e6-0983-4813-ba90-d6ae61e47f5c

    MA Junlin, XING Yan, GAO Qun, et al. Design of micro-miniature infrared seeker with roll-pitch structure[J]. Infrared Technology, 2021, 43(5): 411-416. http://hwjs.nvir.cn/article/id/397ca1e6-0983-4813-ba90-d6ae61e47f5c

    [10] 孙爱平, 龚杨云, 浦恩昌, 等. 非制冷型640×512面阵红外导引头光学系统设计[J]. 红外技术, 2021, 43(8): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202108005.htm

    SUN Aiping, GONG Yangyun, PU Enchang, et al. Optical system design of uncooled 640×512 infrared seeker[J]. Infrared Technology, 2021, 43(8): 736-742. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202108005.htm

  • 期刊类型引用(4)

    1. 周运磊,董效杰,刘三军,刘承毅. 基于改进YOLOv11n的轻量级电力设备过热故障红外图像检测算法. 湖北民族大学学报(自然科学版). 2025(01): 114-118+140 . 百度学术
    2. 余明阳,金波,查志勇,余铮. 图像识别在电力信息化中的应用方法研究. 科技视界. 2024(19): 78-81 . 百度学术
    3. 周坤,李鹤健,李海山. 基于改进Densenet的输电线路杆号牌识别模型. 云南电力技术. 2024(06): 50-54+70 . 百度学术
    4. 张立成,范鹏,卢金宝,李振,程国然,谢涛. 基于图像特征识别和激光点云的施工机械安全距离预警方法研究. 国外电子测量技术. 2024(12): 224-230 . 百度学术

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  198
  • PDF下载量:  140
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-08-19
  • 刊出日期:  2021-09-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日