Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets
-
摘要:
由于挂载于某无人飞行平台上的滚仰式光电吊舱具有极大的速高比,因此在对地观测时,会在光电传感器的曝光时间内产生较大像移,使图像变得模糊不清,从而影响成像质量;同时,快速刷新的视频场景使操作手很难发现感兴趣的目标,也给跟踪捕获带来困难。针对此情况,本文提出利用惯导及光电吊舱信息求取相对目标运动的角速度,并通过设备的反向运动补偿来消除载体平移运动的不利影响。同时,本文还给出了补偿的应用条件限制及误差分析,并就目标距离、补偿角速度与观测角度、飞行高度的关系进行了仿真,接着对惯导测量误差及框架角误差对补偿角速度误差的影响进行了仿真分析。经过实际的挂飞试验验证表明:在不考虑光电吊舱运动范围受限情况下,光电视轴可长时间持续稳定地指向任一目标区域,输出清晰稳定的图像而不受载体平移运动的影响,从而给操作手的观测及操作带来极大便利。
Abstract:The roll–pitch electro-optical pod mounted on an unmanned flight platform has a high velocity–height ratio. When observing the ground, a large image motion can occur during the exposure time of the photoelectric sensor, causing image blurring, and thereby, affecting the imaging quality. Simultaneously, a rapidly refreshed video scene results in the operator facing challenges in finding the target of interest. This in turn causes difficulties in tracking and capturing. Given the aforementioned issue, in this study, the information on inertial and electro-optical pods is used to calculate the angular velocity relative to the target motion and eliminate the adverse effects of carrier motion via the reverse angular motion of the equipment. Furthermore, limitations on compensation application and error analysis are provided. The relationship among target distance, compensation angular velocity, observation angle, and flight altitude is simulated. This is followed by a simulation analysis of the influence of inertial measurement error and frame angle error on the compensation angular velocity error. The actual hanging flight test shows that the electro-optical sight axis can point to any target area continuously and stably for a long time without considering the limited motion range of the equipment and provide clear and stable images as the output, without being affected by the translational motion of the carrier. This in turn provides significant convenience to the operator for observation and operation.
-
-
表 1 本系统中各误差数据
Table 1 Various error data of this system
Item INS Pod Heading/° Roll/° Pitch/° Speed/(m/s) Height/m Roll/° Pitch/° Error 0.1 0.05 0.05 0.1 10 0.03° 0.03 表 2 飞行条件参数
Table 2 Flight condition parameters
Items Parameters Heading/° 44.5 Roll/° -5.3 Pitch/° -2.1 East speed/(m/s) -20.07 North speed/(m/s) 22.97 Sky speed/(m/s) -0.6 Height/m 200 -
[1] 吴海龙, 贾宏光, 魏群, 等. 滚仰式导引头跟踪回路角增量优化[J]. 光学精密工程, 2014, 22(10): 2787-2795. WU Hailong, JIA Hongguang, WEI Qun, et al. Optimization of angle increments in tracking loop for roll-pitch seekers [J]. Optics and Precision Engineering, 2014, 22(10): 2787-2795.
[2] 花文涛, 刘凯, 丁海山. 滚仰式红外导引头视线角速率提取方法研究[J]. 红外技术, 2015, 37(1): 63-72. http://hwjs.nvir.cn/cn/article/id/hwjs201501013 HUA Wentao, LIU Kai, DING Haishan. Research on roll-pitch infrared seeker LOS rate extraction[J]. Infrared Technology, 2015, 37(1): 63-72. http://hwjs.nvir.cn/cn/article/id/hwjs201501013
[3] 田海英, 刘明. 基于扫描反射镜的航空相机前向像移补偿[J]. 光电工程, 2014, 41(9): 20-24. TIAN Haiying, LIU Ming. The forward image motion compensation scheme of aerial camera based on scanning mirror[J]. Opto-Electronics Engineering, 2014, 41(9): 20-24.
[4] 范秀英, 赵曼, 郭霏, 等. 速高比对航空相机的影响分析[J]. 兵工自动化, 2014, 33(3): 1-4. FAN Xiuying, ZHAO Man, GUO Fei, et al. Influence analysis of velocity to height ratio on aerial camera[J]. Ordnance Industry Automation, 2014, 33(3): 1-4.
[5] 闫明, 刘栋, 王惠林, 等. 机载光电观瞄系统的瞄准线指向线性运动补偿方法[J]. 应用光学, 2016, 37(1): 1-5. YAN Ming, LIU Dong, WANG Huilin, et al. Linear motion compensation algorithm for airborne electro-optical sighting system[J]. Journal of Applied Optics, 2016, 37(1): 1-5.
[6] 张树青, 张媛, 周程颢, 等. 星载TDICCD相机方位扫描像移模型研究[J]. 红外与激光工程, 2014, 43(6): 1823-1829. DOI: 10.3969/j.issn.1007-2276.2014.06.023 ZHANG Shuqing, ZHANG Yuan, ZHOU Chenghao, et al. Image motion model of azimuth photography for satellite borne TDICCD camera[J]. Infrared and Laser Engineering, 2014, 43(6): 1823-1829. DOI: 10.3969/j.issn.1007-2276.2014.06.023
[7] 李伟雄, 闫得杰, 王栋. 高分辨率空间相机俯仰成像的像移补偿方法[J]. 红外与激光工程, 2013, 42(9): 2442-2448. LI Weixiong, YAN Dejie, WANG Dong. Image motion compensation method of high resouluttion space camera's imaging with pitch angle[J]. Infrared and Laser Engineering, 2013, 42(9): 2242-2448.
[8] 张丽, 汤恩生, 许敬旺. 空间相机像移补偿方法研究[J]. 航天返回与遥感, 2007, 28(3): 19-22. DOI: 10.3969/j.issn.1009-8518.2007.03.004 ZHANG Li, TANG Ensheng, XU Jingwang. Studies on the image motion compensation methods of space camera [J]. Spacecraft Recovery & Remote Sensing, 2007, 28(3): 19-22. DOI: 10.3969/j.issn.1009-8518.2007.03.004
[9] 贾平, 张葆, 孙辉. 航空成像像移模糊恢复技术[J]. 光学精密工程, 2006, 14(4): 697-703. DOI: 10.3321/j.issn:1004-924X.2006.04.030 JIA Ping, ZHANG Bao, SUN Hui. Restoration of motion-blurred aerial image[J]. Optics and Precision Engineering, 2006, 14(4): 697-703. DOI: 10.3321/j.issn:1004-924X.2006.04.030
[10] 闫得杰, 徐抒岩, 韩诚山. 飞行器姿态对空间相机像移补偿的研究[J]. 光学精密工程, 2008, 16(11): 2109-2203. YAN Dejie, XU Shuyan, HAN Chengshan. Effect of aerocraft attitude on image motion compensation of space camera[J]. Optics and Precision Engineering, 2008, 16(11): 2109-2203.
[11] 王惠林, 杜佩, 庞澜, 等. 基于机载惯导系统的地理跟踪技术[J]. 应用光学, 2011, 32(z): 5-8. WANG Huilin, DU Pei, PANG Lan, et al. Geo-tracking technique based on INS[J]. Journal of Applied Optics, 2011, 32(z): 5-8.
[12] 杨帅, 程红, 李婷, 等. 无人机图像侦察目标定位方法及精度分析[J]. 红外技术, 2016, 38(10): 825-831. DOI: 10.11846/j.issn.1001_8891.201610003 YANG Shuai, CHENG Hong, LI Ting, et al. UAV reconnaissance images targeting method and accuracy analysis[J]. Infrared Technology, 2016, 38(10): 825-831. DOI: 10.11846/j.issn.1001_8891.201610003
[13] 刘鸣鹤, 杨照华. 对地观测相机像移速度矢量建模[J]. 电光与控制, 2014, 21(1): 63-67. DOI: 10.3969/j.issn.1671-637X.2014.01.015 LIU Minghe, YANG Zhaohua. The model of image motion velocity vector in earth observation camera[J]. Elatronics Optics & Control, 2014, 21(1): 63-67. DOI: 10.3969/j.issn.1671-637X.2014.01.015
[14] 孙辉, 张淑梅. 机载成像系统像移计算模型与误差分析[J]. 光学精密工程, 2012, 20(11): 2492-2499. SUN Hui, ZHANG Shumei. Computation model and error budget for image motion of aerial imaging system[J]. Optics and Precision Engineering, 2012, 20(11): 2492-2499.
[15] 彭富伦, 王静, 吴颐雷, 等. 车载光电侦察系统目标定位及误差分析[J]. 应用光学, 2014, 35(4): 557-562. PENG Fulun, WANG Jing, WU Yilei, et al. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562.
[16] 王东鹤, 陈定荣, 张绍君, 等. 直升机载光电平台目标定位误差分析[J]. 红外技术, 2015, 37(11): 926-931. http://hwjs.nvir.cn/cn/article/id/hwjs201511006 WANG Donghe, CHEN Dingrong, ZHANG Shaojun, et al. Targeting error analysis on helicopter photoelectric platform[J]. Infrared Technology, 2015, 37(11): 926-931. http://hwjs.nvir.cn/cn/article/id/hwjs201511006
-
期刊类型引用(12)
1. 王小栋,吕通发,鲍明正,何永春,辛鹏,吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法. 红外技术. 2024(06): 722-727 . 本站查看
2. 孔凡梅,刘璞,赖昌生. 傅里叶描述子在AIDS患者智能化舌诊中的应用. 医学信息. 2023(04): 38-43 . 百度学术
3. 赵利鸿,高强,李大华,于晓. 基于复杂红外图像的多个绝缘子提取方法. 激光杂志. 2021(05): 62-67 . 百度学术
4. 刘正庭,尹骏刚,李凯迪,汪宵飞,王欣,万勋,姚建刚. 基于分水岭算法的绝缘子串红外图像分割方法. 电瓷避雷器. 2020(02): 216-221+228 . 百度学术
5. 许晓路,周文,周东国,朱诗沁,倪辉,罗传仙. 基于PCNN分层聚类迭代的故障区域自动提取方法. 红外技术. 2020(08): 809-814 . 本站查看
6. 赵利鸿,高强,于晓,李大华. 基于红外图像的绝缘子提取方法. 红外技术. 2020(09): 840-845 . 本站查看
7. 魏豪,张凯,郑磊,曹源,张丁文. 基于HOG-RCNN的电力巡检红外图像目标检测. 红外与激光工程. 2020(S2): 242-247 . 百度学术
8. 周正钦,冯振新,周东国,许晓路,谷凯凯. 基于扩展Meanshift电气设备发热故障区域提取方法. 红外技术. 2019(01): 78-83 . 本站查看
9. 冯振新,许晓路,周东国,江翼,丁国成. 基于Canny算子的简化PCNN电力故障区域提取方法. 红外技术. 2019(07): 634-639 . 本站查看
10. 李晓峰,庞先海,顾朝敏,董驰. 基于红外图像的变电站巡检故障分析. 信息技术. 2019(08): 121-124+129 . 百度学术
11. 李伟,王军,俞跃. 基于可见光匹配矩阵的电气部件故障红外自动识别算法. 红外技术. 2019(11): 1047-1056 . 本站查看
12. 周可慧,廖志伟,肖异瑶,肖立军,蓝鹏昊,万新宇. 基于改进CNN的电力设备红外图像分类模型构建研究. 红外技术. 2019(11): 1033-1038 . 本站查看
其他类型引用(8)