一种新型偏振-微光EMCCD传感器研制

顾子悦, 那启跃, 徐建东, 沈吉, 常维静

顾子悦, 那启跃, 徐建东, 沈吉, 常维静. 一种新型偏振-微光EMCCD传感器研制[J]. 红外技术, 2024, 46(10): 1138-1144.
引用本文: 顾子悦, 那启跃, 徐建东, 沈吉, 常维静. 一种新型偏振-微光EMCCD传感器研制[J]. 红外技术, 2024, 46(10): 1138-1144.
GU Ziyue, NA Qiyue, XU Jiandong, SHEN Ji, CHANG Weijing. Development of a Novel Polarization Low-light EMCCD Sensor[J]. Infrared Technology , 2024, 46(10): 1138-1144.
Citation: GU Ziyue, NA Qiyue, XU Jiandong, SHEN Ji, CHANG Weijing. Development of a Novel Polarization Low-light EMCCD Sensor[J]. Infrared Technology , 2024, 46(10): 1138-1144.

一种新型偏振-微光EMCCD传感器研制

基金项目: 

科技创新2030-“新一代人工智能”重大项目 2018AAA0103100

详细信息
    作者简介:

    顾子悦(1992-),男,工程师,硕士,主要从事光电器件设计及开发,E-mail: jssgzy@vip.qq.com

    通讯作者:

    沈吉(1988-),男,高级工程师,硕士,主要从事光电器件与组件科研开发,E-mail: njustshenji@126.com

  • 中图分类号: TN223

Development of a Novel Polarization Low-light EMCCD Sensor

  • 摘要:

    随着图像传感器的发展,图像传感器需要探测更多维度的图像信息。为了解决偏振单元无法在低照度条件下成像的问题,设计了一种新型偏振-微光结构,新型结构单元的引入可以大幅度提高器件在低照度微光条件下的成像质量。完成了偏振-微光结构的工艺制作,同时利用多次高能离子注入及高温退火形成鞍形p型纵向抗晕结构,实现了EMCCD器件的光晕抑制。最后对器件成像性能进行了分析,器件在10-2 lx量级环境照度下成像质量几乎不下降,同时也能够获得足够的偏振信息,实现对目标的偏振探测。此新型偏振-微光结构能使图像传感器在低照度微光条件下完成对目标的多维度信息探测。

    Abstract:

    The development of image sensors has made it necessary to detect more dimensions of image information. Hence, a new polarization low-light structure was designed to solve the problem in which polarization units cannot be imaged under low-illumination conditions. The introduction of this new structural unit significantly improves the imaging quality of the device under low illumination and light conditions. We completed the production process of a polarized low-light structure and utilized multiple high-energy ion implantation and high-temperature annealing to form a saddle-shaped, "p"-shaped, longitudinal antiblooming structure to achieve the halo suppression of EMCCD devices. Finally, the imaging performance of the device was analyzed, and it was found that the imaging quality of the device hardly decreased under low-illumination conditions, while sufficient polarization information was obtained to achieve polarization detection of the target. This new polarized low-light structure enables image sensors to detect multidimensional information from targets under low-illumination and low-light conditions.

  • 图  1   传统2×2偏振单元阵列设计[14]

    Figure  1.   Design of unit array with four polarization directions[14]

    图  2   引入无偏振单元的3×3阵列设计[5]

    Figure  2.   Design of 3×3 polarization unit array with non polarization units[5]

    图  3   优化后的偏振单元阵列设计

    Figure  3.   Optimized polarization unit array design

    图  4   在金属光栅和Si基片之间添加SiO2的结构示意图

    Figure  4.   Schematic diagram of adding SiO2 between metal grating and Si substrate

    图  5   膜系反射率曲线

    Figure  5.   Film reflectance curve

    图  6   偏振光栅加工工艺流程

    Figure  6.   Polarization grating processing process flowchart

    图  7   单个偏振方向的光栅结构SEM图像

    Figure  7.   Polarization grating SEM image

    图  8   偏振-微光结构版图及SEM图像

    Figure  8.   Polarization low light structure layout and SEM images

    图  9   带偏振-微光结构的EMCCD晶圆

    Figure  9.   EMCCD wafer with polarization low light structure

    图  10   纵向抗晕机制示意图

    Figure  10.   Schematic diagram of longitudinal anti halo mechanism

    图  11   第一次推阱后光敏单元浓度分布图

    Figure  11.   Concentration distribution map of photosensitive units after the first trap push

    图  12   第三次推阱后光敏单元浓度分布图

    Figure  12.   Concentration distribution diagram of photosensitive units after the third push well

    图  13   光电二极管1 μm2面积内的电荷Npd与衬底电压Vsub之间的关系

    Figure  13.   The relationship between the charge Npd within the 1 μm2 area of the photodiode and the substrate voltage Vsub

    图  14   偏振成像模组(左)及偏振EMCCD器件(右)

    Figure  14.   Polarization imaging module(left) and polarization EMCCD device(right)

    图  15   成像结果

    Figure  15.   Imaging results

    图  16   不同偏振结构成像结果对比

    Figure  16.   Comparison of imaging results with different polarization structures

    图  17   器件抗光晕性能测试结果

    Figure  17.   Test results of device anti halo performance

  • [1]

    Jeong J, Jung C, Kim T. Using machine learning to improve multi-qubit state discrimination of trapped ions from uncertain EMCCD measurements[J]. Optics Express, 2023, 31(21): 35113-35130. DOI: 10.1364/OE.491301

    [2] 陈远金, 张猛蛟, 戴放, 等. 基于EMCCD的单兵综合侦察仪设计及作用距离研究[J]. 红外技术, 2017, 39(5): 399-403. http://hwjs.nvir.cn/article/id/hwjs201705003

    CHEN Yuanjin, ZHANG Mengjiao, DAI Fang, et al. The design of the individual integrated reconnaissance instrument based on EMCCD and estimation of function distance[J]. Infrared Technology, 2017, 39(5): 399-403. http://hwjs.nvir.cn/article/id/hwjs201705003

    [3]

    Gural P, Mills T, Mazur M, et al. Development of a very faint meteor detection system based on an EMCCD sensor and matched filter processing[J]. Experimental Astronomy, 2022, 53(3): 1085-1126. DOI: 10.1007/s10686-021-09828-3

    [4]

    LV T, LI J, Arif N, et al. Polarization and external-field enhanced photocatalysis[J]. Matter, 2022, 5(9): 2685-2721. DOI: 10.1016/j.matt.2022.06.004

    [5] 那启跃, 姜恺文, 徐建东, 等. 偏振-微光一体化EMCCD相机的设计与开发[J]. 应用光学, 2024, 45(2): 321-328.

    NA Qiyue, JIANG Kaiwen, XU Jiandong, et al. Design and development of polarization-low level light integrated EMCCD camera[J]. Journal of Applied Optics, 2024, 45(2): 321-328.

    [6]

    WANG Shen, Douglas A Carpenter, Adam DeJager, et al. A 47 million pixel high-performance interline CCD image sensor[J]. IEEE Trans. on Electron Devices, 2016, 63: 174-181 DOI: 10.1109/TED.2015.2447214

    [7]

    LI C, GUO C, HAN L, et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 9396-9416.

    [8]

    Douglas A. Carpenter, et al. High performance 7.4-micron interline transfer CCD platform for applied imaging markets[C]//Proc. of SPIE, 2013, 8659(1) : 8

    [9]

    Wilson A E, Parker V A, Feinberg M. Polarization in the contemporary political and media landscape[J]. Current Opinion in Behavioral Sciences, 2020, 34: 223-228. DOI: 10.1016/j.cobeha.2020.07.005

    [10]

    LI Shujun, JIANG Huilin, ZHU Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809.

    [11]

    LUO Haibo, ZHANG Junchao, GAI Xingqin, et al. Development status and prospects of polarization imaging technology[J]. Infrared and Laser Engineering, 2022, 51(1): 109-118.

    [12]

    WU Hao, WU Yuan, WU Wei, et al. Study on the digital low-light level night vision device technology[J]. Optoelectronic Technology, 2022, 42(1): 72-78.

    [13]

    WU Xingxing, LIU Jinguo, ZHOU Huaide, et al. Spaceborne low light imaging based on EMCCD and CMOS[J]. Infrared and Laser Engineering, 2016, 45(5): 205-210.

    [14] 陈远金, 张猛蛟, 戴放, 等. EMCCD集成偏振-微光一体化成像技术研究[J]. 应用光学, 2020, 41(2): 242-247.

    CHEN Yuanjin, ZHANG Mengjiao, DAI Fang, et al. Research on polarization-low level integrated imaging technology based on EMCCD[J]. Journal of Applied Optics, 2020, 41(2): 242-247.

    [15] 何家维, 何昕, 魏仲慧, 等. 高灵敏度EMCCD导航相机的设计[J]. 光学精密工程, 2018, 26(12): 3019-3027.

    HE Jiawei, HE Xin, WEI Zhonghui, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and Precision Engineering, 2018, 26(12): 3019-3027.

  • 期刊类型引用(4)

    1. 陈利,付文金. 混凝土无损检测技术应用——以沙特阿美项目为例. 广东建材. 2024(03): 53-56 . 百度学术
    2. 蓝建勋,陈贵强,曾金亮,陈嘉欣. 基于碳纤维骨架的岭南历史建筑灰塑修缮新技术. 建筑技术. 2024(15): 1891-1894 . 百度学术
    3. 赵薇,曹慧媛,吴燕琪,陶洁,于亚萍. 红外热成像在聚焦换能器焦平面测量中的应用. 计量科学与技术. 2024(10): 73-78+72 . 百度学术
    4. 李海,肖顺娥,邓呈亮,吴祥奎,吴必华,常树森,魏在荣. 红外热成像联合"二纵五横分区法"在儿童股前外侧穿支皮瓣穿支定位中的临床应用. 中华显微外科杂志. 2023(06): 619-624 . 百度学术

    其他类型引用(3)

图(17)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  12
  • PDF下载量:  22
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-07-23
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回