锗基长波红外圆锥形微结构减反射性能

汤克彬, 李珊, 李初晨, 毛科, 张顺关, 曾绍禹

汤克彬, 李珊, 李初晨, 毛科, 张顺关, 曾绍禹. 锗基长波红外圆锥形微结构减反射性能[J]. 红外技术, 2024, 46(1): 36-42.
引用本文: 汤克彬, 李珊, 李初晨, 毛科, 张顺关, 曾绍禹. 锗基长波红外圆锥形微结构减反射性能[J]. 红外技术, 2024, 46(1): 36-42.
TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42.
Citation: TANG Kebin, LI Shan, LI Chuchen, MAO Ke, ZHANG Shunguan, ZENG Shaoyu. Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared[J]. Infrared Technology , 2024, 46(1): 36-42.

锗基长波红外圆锥形微结构减反射性能

基金项目: 

国家自然科学基金 51765027

详细信息
    作者简介:

    汤克彬(1997-),男,硕士研究生,主要从事红外光学材料减反增透微结构方面的研究。E-mail:1878942687@qq.com

    通讯作者:

    李珊(1965-),女,副教授,硕士,主要从事数字化设计与制造及微纳米切削方面的研究。E-mail:624814911@qq.com

  • 中图分类号: O435

Antireflection Performance of the Conical Microstructures of Germanium Substrate in Long-Wavelength Infrared

  • 摘要: 锗是重要的红外光学材料,为减小锗表面的菲涅耳反射损耗,提高光利用率,研究了锗基底圆锥形微结构的减反射性能。基于时域有限差分法(Finite Difference Time Domain),并采用单因素法研究了微结构的占空比、周期、高度等结构参数与入射角在8~12 μm长波红外波段对反射率的影响,确定了微结构在低反射情况下较优的结构参数组合,其在整个波段范围内的平均反射率低于1%,远低于平板锗结构的35.47%,在9~11 μm的波段范围内反射率低于0.5%,且光波在40°范围内入射时,圆锥形微结构的平均反射率仍然较低。将优化的圆锥形微结构与平板结构进行了对比,从等效折射率、反射场分布和能量吸收分布3方面进一步证实了圆锥形微结构在整个波段范围内优异的减反射性能。
    Abstract: Germanium is an important infrared optical material. To reduce Fresnel reflection loss on the germanium surface and improve the light utilization rate, the anti-reflection performance of the conical microstructure on a germanium substrate was studied. Based on the finite difference time domain (FDTD) method and the single factor method, the effects of the microstructure parameters, such as duty ratio, period, height, and the angle of incidence on reflectivity are discussed for the 8 μm to 12 μm long-wavelength infrared band. The structural parameters of the microstructure at low reflection was determined. Its average reflectivity over the entire wavelength range is less than 1%, which is much lower than the 35.47% reflectivity of the slab germanium structure, and the reflectivity in the wavelength range of 9 μm to 11 μm is less than 0.5%. The average reflectivity of the conical microstructure remained low when light was incident at 40°. By comparing the optimized conical microstructure with the slab structure, the excellent antireflection performance of the conical microstructure over the entire wavelength range was further confirmed based on the equivalent refractive index, reflected electric field intensity distribution, and absorption per unit volume.
  • 图  1   FDTD仿真模型及结构参数示意图。(a) 圆锥形微结构模型的三维示意图;(b) 平板型结构模型的三维示意图;(c) 圆锥形微结构模拟设置及结构参数;(d) 圆锥形微结构实际模拟单元

    Figure  1.   Schematics of FDTD simulation model and structural parameters. (a) Three-dimensional schematic of the conical microstructure model; (b) Three-dimensional schematic of the slab structure model; (c) The Conical Microstructural Simulation Setup and Structural Parameters; (d) The Conical Microstructure actual simulation unit cell

    图  2   单晶锗的折射率与波长的关系曲线

    Figure  2.   The relationship between the refractive index and wavelength of single crystal germanium

    图  3   占空比对反射率的影响。(a) 不同占空比与反射率的关系;(b) 占空比为0.8~1时与反射率的关系

    Figure  3.   The effect of Duty ratio on reflectivity. (a) The relationship between different fill factor and reflectivity; (b) The reflectivity when the fill factor is 0.8-1

    图  4   周期对反射率的影响。(a) 不同周期与反射率的关系;(b) 周期为2.6~3.0 μm时与反射率的关系

    Figure  4.   The effect of period on reflectivity. (a) The relationship between different periods and reflectivities; (b) The reflectivity when the period is 2.6-3.0 μm

    图  5   圆锥形微结构高度对反射率的影响。(a) 不同高度与反射率的关系;(b) 高度为3.6~4.0 μm时与反射率的关系

    Figure  5.   The effect of conical microstructure height on reflectance. (a) The relationship between different heights and reflectivities; (b) The reflectivity when the height is 3.6-4.0 μm

    图  6   平板型与圆锥形微结构的反射曲线

    Figure  6.   Reflection curves of the slab structure and the conical microstructure

    图  7   0°~70°入射时圆锥形微结构平均反射率曲线

    Figure  7.   Average reflectance curve of the conical microstructure when light incidence is in the range of 0°-70°

    图  8   平板型与圆锥形微结构的等效折射率

    Figure  8.   Equivalent refractive indexes of the slab structure and the conical microstructure

    图  9   两种结构在Y=0截面上9.6 μm、11.2 μm、12 μm波长下的反射场分布

    Figure  9.   The reflected electric field intensity distribution of the two structures at 9.6 μm, 11.2 μm and 12 μm on the Y=0 section

    图  10   两种结构在Y=0截面上9.6 μm波长下的能量吸收分布。(a) 平板结构;(b) 圆锥形结构

    Figure  10.   The energy absorption distribution of the two structures at 9.6 μm on the Y=0 section. (a) The slab structure; (b) The conical microstructure

  • [1] 程海娟, 于晓辉, 彭浪, 等. Ge基底LaF3-ZnS-Ge高耐用中波红外增透膜[J]. 红外与激光工程, 2019, 48(11): 262-268.

    CHENG H J, YU X H, PENG L, et al. LaF3-ZnS-Ge high-durability MWIR antireflective film on Ge substrate[J]. Infrared and Laser Engineering, 2019, 48(11): 262-268.

    [2] 向华, 武亮亮, 赵登峰, 等. 表面微纳结构对光的透射性能影响分析[J]. 光学技术, 2020, 46(4): 404-409.

    XIANG H, WU L L, ZHAO D F, et al. Analysis of effect of surface micro-nano structure on transmission performance of light[J]. Optical Technique, 2020, 46(4): 404-409.

    [3]

    YE X, HUANG J, GENG F, et al. Broadband antireflection subwavelength structures on fused silica using lower temperatures normal atmosphere thermal dewetted Au nanopatterns[J]. IEEE Photonics Journal, 2015, 8(1): 1-10.

    [4]

    Busse L E, Frantz J A, Shaw L B, et al. Review of antireflective surface structures on laser optics and windows[J]. Applied Optics, 2015, 54(31): F303-F310. DOI: 10.1364/AO.54.00F303

    [5] 杨亮亮, 夏寅聪, 陆玉灿. 抗反射膜对衍射光学元件衍射效率的影响分析[J]. 红外技术, 2021, 43(10): 930-933. http://hwjs.nvir.cn/article/id/e4d1a527-c579-49df-bf54-1cefff6d9902

    YANG L L, XIA Y C, LU Y C. Effect of antireflection films on diffraction efficiency of diffractive optical element[J]. Infrared Technology, 2021, 43(10): 930-933. http://hwjs.nvir.cn/article/id/e4d1a527-c579-49df-bf54-1cefff6d9902

    [6]

    Clapham P B, Hutley M C. Reduction of lens reflexion by the "Moth Eye" principle[J]. Nature, 1973, 244(5414): 281-282. DOI: 10.1038/244281a0

    [7] 尚鹏, 熊胜明. ZnSe衬底表面亚波长增透结构的设计及误差分析[J]. 中国激光, 2014, 41(1): 0116004.

    SHANG P, XIONG S M. Design and error analysis of sub-wavelength antireflective micro-structure on surface of ZnSe substrate[J]. Chinese Journal of Lasers, 2014, 41(1): 0116004.

    [8]

    TU C, HU J, Menyuk C R, et al. Optimization of random motheye structures for silica windows with normally incident light[C]//Novel Optical Materials and Applications. Optical Society of America, 2021, DOI: 10.1364/noma.2021.nof2c.6.

    [9] 董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 522004.

    DONG T T, FU Y G, CHEN C, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 522004.

    [10] 潘峰, 张旺, 张荻. 仿生纳米硅结构减反射及陷光性能模拟研究[J]. 光学学报, 2016, 36(5): 171-176.

    PAN F, ZHANG W, ZHANG D. Simulation of anti-reflection and light-trapping property of bio-inspired silicon structure[J]. Acta Optica Sinica, 2016, 36(5): 171-176.

    [11]

    TING C J, CHEN C F, CHOU C P. Antireflection subwavelength structures analyzed by using the finite difference time domain method[J]. Optik, 2009, 120(16): 814-817. DOI: 10.1016/j.ijleo.2008.03.011

    [12]

    SUN C H, JIANG P, JIANG B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters, 2008, 92(6): 061112.

    [13]

    YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics & Laser Technology, 2015, 67: 72-77.

    [14] 吴启花, 熊敏, 黄勇, 等. 硅基中长波红外减反微结构研究[J]. 红外与激光工程, 2017, 46(4): 76-82.

    WU Q H, XIONG M, HUANG Y, et al. Antireflective silicon based microstructures for the mid- and long-wavelength infrared[J]. Infrared and Laser Engineering, 2017, 46(4): 76-82.

    [15] 李阳平, 陈海波, 刘正堂, 等. 锗表面二维亚波长结构的反应离子刻蚀制备[J]. 材料科学与工艺, 2012, 20(5): 76-80.

    LI Y P, CHEN H B, LIU Z T, et al. Two dimensional subwavelength structures on Ge surface fabricated with reactive ion etching[J]. Materials Science & Technology, 2012, 20(5): 76-80.

    [16] 徐启远, 刘正堂, 李阳平, 等. 锗衬底红外抗反射亚波长结构的研究[J]. 光学学报, 2010, 30(6): 1745-1748.

    XU Q Y, LIU Z T, LI Y P, et al. Studies of infrared antireflection subwavelength structure on Ge substrate[J]. Acta Optica Sinica, 2010, 30(6): 1745-1748.

    [17]

    Moharam M G, Grann E B, Pommet D A, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. JOSA A, 1995, 12(5): 1068-1076.

    [18] 惠爽谋, 花银群, 李志宝. 均匀与混合蛾眼结构减反射性能的模拟[J]. 光学学报, 2019, 39(4): 0416003.

    HUI S M, HUA Y Q, LI Z B. Simulation of anti-reflection properties of uniform and hybrid moth-eye structures[J]. Acta Optica Sinica, 2019, 39(4): 0416003.

  • 期刊类型引用(2)

    1. 常诚,钱福丽,芶国汝,唐锐,王体炉,高思博,张韦晨曦,何阳阳,李理,杨启鸣,张杰,刘颖琪,段瑜,杨文运,王光华. 高效叠层OLED白光器件进展. 红外技术. 2023(12): 1141-1152 . 本站查看
    2. 梁枭,姜会林,孙昊,王春艳,刘欢. 依据近轴光学理论求解双焦系统初始结构. 红外与激光工程. 2021(06): 173-180 . 百度学术

    其他类型引用(0)

图(10)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  44
  • PDF下载量:  26
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-11-29
  • 刊出日期:  2024-01-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日