Fault Diagnosis and Status Monitoring of Rolling Bearings Using Infrared Thermal Imaging
-
摘要: 红外热成像技术根据物体对外辐射强度进行具体成像,所得热图像不仅包括物体轮廓而且对于物体表面温度场分布可进行直观表征,利用该技术进行滚动轴承状态判别可结合热图像特征丰富以及图像处理技术将滚动轴承状态判别转换到一个全新的技术视角。本文首先对红外热成像技术基本原理进行简单介绍;其次,主要对国内外利用红外热成像技术进行滚动轴承状态监测与故障诊断的各个环节所采用的多种技术方法进行总结论述,最后对各技术环节所采用的多种方法的优、缺点、以及局限性进行对比性的总结分析,对滚动轴承红外热成像故障诊断与状态监测发展前景进行展望。Abstract: Infrared thermal imaging technology captures the external radiation intensity of an object, and the obtained thermal image includes not only the outline of the object but also the surface temperature field distribution, which can be visually characterized. Infrared thermal imaging can be combined with image processing technologies to enhance rolling bearing state discrimination. Here, we first introduce the basic principle of infrared thermal imaging technology. Second, different technical methods used in different aspects of rolling bearing condition monitoring and fault diagnosis using infrared thermal imaging technology are summarized and discussed. Finally, we summarize and analyze the advantages, shortcomings, and limitations of the different methods used in infrared thermal imaging fault diagnosis and condition monitoring of rolling bearings. The development prospects of infrared thermal imaging fault diagnosis and condition monitoring of rolling bearings are also summarized and discussed.
-
-
[1] 陈强强, 戴邵武, 戴洪德, 等. 滚动轴承故障诊断方法综述[J]. 仪表技术, 2019(9): 1-4, 42(DOI:10.19432/j.cnki.issn1006-2394. 2019.09.001). CHEN Qiangqiang, DAI Shaowu, DAI Hongde, et al. Reviewof fault diagnosis methods of rolling bearings[J]. Journal of Instrumentation Technology, 2019(9): 1-4, 42(DOI:10.19432/j.cnki.issn1006-2394. 2019.09.001).
[2] 顾晓辉, 杨绍普, 刘文朋. 高速列车轴箱轴承健康监测与故障诊断研究综述[J]. 力学学报, 2022, 54(7): 1780-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207003.htm GU Xiaohui, YANG Shaopu, LIU Wenpeng, Review of research on health monitoring and fault diagnosis of axlebox bearings of high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1780-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202207003.htm
[3] 王华伟. 基于红外热成像的温度场测量关键技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013. WANG Huawei. Research on Key Technology of Temperature Field Measurement Based on Infrared Thermography[D]. Xi'an: Graduate School of Chinese Academy of Sciences(Xi'an Institute of Optics and Fine Mechanics), 2013.
[4] 汤武初, 王敏杰, 陈光东, 等. 高速列车故障轴箱轴承的温度分布研究[J]. 铁道学报, 2016, 38(7): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607007.htm TANG Wuchu, WANG Minjie, CHEN Guangdong, et al. Study on temperature distribution of faulty axlebox bearings of high-speed train[J]. Journal of the China Railway Society, 2016, 38(7): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607007.htm
[5] Mian Tauheed, Anurag Choudhary, Shahab Fatima. Vibration and infrared thermography based multiple fault diagnosis of bearing using deep learning[J]. Nondestructive Testing and Evaluation, 2022, 38(7): 275-296.
[6] 戴景民, 汪子君. 红外热成像无损检测技术及其应用现状[J]. 自动化技术与应用, 2007, 139(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200701003.htm DAI Jingmin, WANG Zijun. Nondestructive testing technology and application status of infrared thermography[J]. Automation Technology and Application, 2007, 139(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200701003.htm
[7] 兰孟华. 基于DM642的红外测温与图像处理算法研究[D]. 南京: 南京理工大学, 2010. LAN Menghua. Research on Infrared Temperature Measurement and Image Processing Algorithm Based on DM642[D]. Nanjing: Nanjing University of Science and Technology, 2010.
[8] 王瑞凤, 杨宪江, 吴伟东. 发展中的红外热成像技术[J]. 红外与激光工程, 2008, 37(S2): 699-702. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200807001086.htm WANG Ruifeng, YANG Xianjiang, WU Weidong. Infrared thermography technology under development[J]. Infrared and Laser Engineering, 2008, 37(S2): 699-702. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZYHG200807001086.htm
[9] 尚磊. 红外成像系统关键技术研究与实现[D]. 西安: 西安电子科技大学, 2013. SHANG Lei. Research and Implementation of Key Technologies of Infrared Imaging System[D]. Xi'an: Xidian University, 2013.
[10] 董显林, 毛朝梁, 姚春华, 等. 非制冷红外探测器用热释电陶瓷材料研究进展[J]. 红外与激光工程, 2008, 177(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200801009.htm DONG Xianlin, MAO Chaoliang, YAO Chunhua, et al. Research progress on pyroelectric ceramic materials for uncooled infrared detectors[J]. Infrared and Laser Engineering, 2008, 177(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200801009.htm
[11] 陈大鹏, 毛宏霞, 肖志河. 红外热成像无损检测技术现状及发展[J]. 计算机测量与控制, 2016, 24(4): 1-6, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm CHEN Dapeng, MAO Hongxia, XIAO Zhihe. Status quo and development of nondestructive testing technology for infrared thermography[J]. Computer Measurement and Control, 2016, 24(4): 1-6, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201604001.htm
[12] 李艳超, 杨兵华, 刘欢, 等. 基于红外技术的滚动轴承温度场测量系统[J]. 轴承, 2020(9): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW202009013.htm LI Yanchao, YANG Binghua, LIU Huan, et al. Temperature field measurement system of rolling bearing based on infrared technology[J]. Bearings, 2020(9): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW202009013.htm
[13] 刘喆, 王燕霜. 滚动轴承温度场研究的现状和展望[J]. 机械传动, 2010, 34(3): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201003025.htm LIU Zhe, WANG Yanshuang. Current status and prospect of rolling bearing temperature field research[J]. Mechanical Transmission, 2010, 34(3): 88-91 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201003025.htm
[14] Kim W, Seo J, Hong D. Infrared thermographic inspection of ball bearing; condition monitoring for defects under dynamic loading stages[J/OL]. [2012]. Materials Science, https://www.semanticscholar.org/paper/Infrared-Thermographic-Inspection-of-Ball-Bearing%3B-Kim-Seo/46d9b4b60d014338609b6f3ba67c57a8b2afd6c1.
[15] 侯新玉. 红外热成像摄像头在轴承测温方面的研究[J]. 华东科技, 2022(2): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKJ202202025.htm HOU Xinyu. Research on infrared thermal imaging camera in bearing temperature measurement[J]. East China Science and Technology, 2022(2): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HDKJ202202025.htm
[16] 武峥嵘. 基于多点红外探头的铁路轴温热判方法和探测系统研究[D]. 北京: 北京工业大学, 2013. WU Zhengrong. Research on Railway Shaft Temperature Judgment Method and Detection System Based on Multi-point Infrared Probe[D]. Beijing: Beijing University of Technology, 2013.
[17] 李彬彬, 寇志海, 郭宇航. 高速旋转轴承温度测量技术综述[J]. 科技创新与应用, 2022, 12(20): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202220038.htm LI Binbin, KOU Zhihai, GUO Yuhang. Review of temperature measurement technology of high-speed rotating bearings[J]. Science and Technology Innovation and Application, 2022, 12(20): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202220038.htm
[18] 王洋, 杨立. 基于Faster R-CNN的旋转机械红外检测与识别[J]. 红外技术, 2020, 42(11): 1053-1060. http://hwjs.nvir.cn/article/id/a39825b7-254e-4f76-a940-488f94a7076f WANG Yang, YANG Li. Infrared detection and identification of rotating machinery based on faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1053-1060. http://hwjs.nvir.cn/article/id/a39825b7-254e-4f76-a940-488f94a7076f
[19] 王洋, 杨立. 旋转机械红外智能状态监测与故障诊断[J]. 光学精密工程, 2022, 30(16): 1905-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202216001.htm WANG Yang, YANG Li. Infrared intelligent condition monitoring and fault diagnosis of rotating machinery[J]. Optics and Precision Engineering, 2022, 30(16): 1905-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202216001.htm
[20] Younus Ali M D, Bo-Suk Yang. Intelligent fault diagnosis of rotating machinery using infrared thermal image[J]. Expert Syst. Appl. , 2012, 39: 2082-2091.
[21] Choudhary Anurag, Deepam Goyal, Shimi Sudha Letha. Infrared thermography-based fault diagnosis of induction motor bearings using machine learning[J]. IEEE Sensors Journal, 2021, 21: 1727-1734.
[22] 孙富成, 宋文渊, 滕红智, 等. 基于红外热图像的变速箱轴承状态监测与故障诊断[J]. 电光与控制, 2017, 24(7): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201707025.htm SUN Fucheng, SONG Wenyuan, TENG Hongzhi, et al. Transmission bearing condition monitoring and fault diagnosis based on infrared thermal image[J]. Electro-Optics & Control, 2017, 24(7): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201707025.htm
[23] Tran Van Tung, YANG Bo-Suk, GU Fengshou, et al. Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 38: 601-614.
[24] 杨二斌, 王文刚, 问国辉. 基于红外热成像和机器学习的动态转向架监测系统研发[J]. 铁道机车车辆, 2022, 42(4): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC202204008.htm YANG Erbin, WANG Wengang, WEN Guohui. Development of dynamic bogie monitoring system based on infrared thermal imaging and machine learning[J]. Railway Locomotive and Rolling Stock, 2022, 42(4): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC202204008.htm
[25] Deilamsalehy H, Havens T C, Lautala P, et al. An automatic method for detecting sliding railway wheels and hot bearings using thermal imagery. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2017, 231(6): 690-700(DOI: 10.1177/0954409716638703).
[26] Choudhary A, Shimi S L, Akula A. Bearing fault diagnosis of induction motor using thermal imaging[C]// International Conference on Computing, Power and Communication Technologies(GUCON), 2018: 950-955.
[27] HUO Zhiqiang, ZHANG Yu, Richard Sath, et al. Self-adaptive fault diagnosis of roller bearings using infrared thermal images[C]//43rd Annual Conference of the IEEE Industrial Electronics Society, 2017: 6113-6118.
[28] Mehta Ankush, Deepam Goyal, Anurag Choudhary, et al. Machine learning-based fault diagnosis of self-aligning bearings for rotating machinery using infrared thermography[C]//Mathematical Problems in Engineering, 2021: 1-15.
[29] 刘淑琴. 图像特征提取方法及其应用研究[D]. 西安: 西北大学, 2016. LIU Shuqin. Research on Image Feature Extraction Method and Its Application[D]. Xi'an: Northwest University, 2016.
[30] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202005001.htm ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of research on convolutional neural networks[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202005001.htm
[31] DUAN L, YAO M, WANG J, et al. Segmented infrared image analysis for rotating machinery fault diagnosis[J]. Infrared Physics & Technology, 2016, 77: 267-276.
[32] JIA Zhen, LIU Zhenbao, Vong Chi-Man, et al. A rotating machinery fault diagnosis method based on feature learning of thermal images[J]. IEEE Access, 2019(7): 12348-12359.
[33] LI Yongbo, WANG Xianzhi, SI Shubin, et al. A new intelligent fault diagnosis method of rotating machinery under varying-speed conditions using infrared thermography[J]. Complex, 2019: 2619252-1-2619252-12.
[34] Sharma Kunal, Deepam Goyal, Rajesh Kanda. Intelligent fault diagnosis of bearings based on convolutional neural network using infrared thermography[C]//Journal of Engineering Tribology, 2022, 236: 2439-2446.