Optical System Design of Suspended Infrared Night Vision Based on Low Light Level Helmet Observation
-
摘要: 头盔夜视仪由单波段向多波段图像融合的方向发展。本文对基于微光头盔观察、悬挂式红外夜视仪的技术方案、图像配准精度进行分析并进行光学仿真。首先分析悬挂式红外夜视仪与微光头盔组合使用的工作模式以及图像旋转、圆形视场的设计方案;其次根据悬挂式红外夜视仪的设计指标,对其红外物镜及投影物镜进行光学仿真;第三从悬挂精度、光轴一致性及畸变等三方面分析图像配准精度;最后根据仿真结果及图像配准精度分析说明基于微光头盔观察、悬挂式红外夜视仪的技术方案可行,能达到预期的效果。Abstract: Helmet night vision systems are developed from single-band to multi-band image fusion. In this study, we analyzed the technical program and image registration accuracy based on low-light-level helmet observation and a hanging infrared night vision device. Optical simulation analysis was also conducted. First, we analyzed the working mode of the combination of hanging infrared night vision and low-light-level helmet, as well as the design scheme of image rotation and circular field of view. Second, according to the design index of hanging infrared night vision, optical simulation of an infrared lens and projection lens was carried out. Third, the image registration accuracy was analyzed from three viewpoints: suspension accuracy, optical axis consistency, and distortion. Finally, according to the simulation results and image registration accuracy analysis, a technical scheme based on low-light-level helmet observation and suspended infrared night vision is feasible and can achieve the targeted effect.
-
Keywords:
- projection lens /
- infrared lens /
- image fusion /
- image registration /
- suspended /
- infrared night vision
-
-
表 1 悬挂式红外夜视仪光学参数
Table 1 Optical parameters of suspended infrared night vision
Infrared lens Focal length
Field
F/#
Band
Detector type13.88 mm
20°(circular)
1
8~12 μm
UFPA 384×288, 17 μmProjection lens Focal length
Field
F/#
Band20.58 mm
20°(circular)
4
0.486~0.656 μmDetector type OLED 800×600, 12.6 μm Exit pupil distance 3.7 mm Suspended infrared night vision Field
Magnification
Temperature20°(circular)
1×
−40℃~60℃表 2 红外物镜、投影物镜在相同视场点处的畸变
Table 2 Distortion of infrared lens and projection lens at the same field of view
Field of view Infrared lens Projection lens 0.1ω −0.01999022% 0.02068782% 0.2ω −0.07997603% 0.08263791% 0.3ω −0.18000125% 0.18550392% 0.4ω −0.32013343% 0.32868725% 0.5ω −0.50045517% 0.51130229% 0.6ω −0.72105160% 0.73212184% 0.7ω −0.98199306% 0.98949535% 0.8ω −1.28331225% 1.28122817% 0.9ω −1.62497467% 1.60440259% 1ω −2.00684062% 1.95510906% 表 3 红外物镜公差
Table 3 Tolerance of infrared objective lens parts
Parameter Tolerance N ±3 aperture ΔN ±0.8 aperture Aspheric error ±0.00006 mm Thickness of optical parts ±0.02 mm Surface tilt ±0.006 mm Air distance ±0.02 mm Element tilt ±0.02 mm Element eccentricity 0.025 mm 表 4 红外物镜公差分析结果
Table 4 Tolerance analysis results of infrared objective lens
Lens percentage/% MTF minimum
(Nyquist frequency)90 0.219 80 0.246 50 0.291 20 0.348 10 0.365 表 5 投影物镜零件公差
Table 5 Tolerance of projection lens parts
Parameter Tolerance N ±4 aperture ΔN ±0.5 aperture Thickness of optical part ±0.02 mm Air distance ±0.04 mm Surface tilt ±6′ Element tilt ±6′ Element eccentricity ±0.052 mm nd ±0.0009 vd ±0.95% 表 6 投影物镜公差分析结果
Table 6 Tolerance analysis results of projection lens
Lens percentage/% MTF minimum(40 lp/mm) 90 0.603 80 0.626 50 0.669 20 0.687 10 0.697 -
[1] 任桃桃, 邱亚峰. 头盔式单目低照度CMOS夜视仪结构设计与分析[J]. 红外技术, 2016, 38(8): 653-658. http://hwjs.nvir.cn/article/id/hwjs201608005 REN Taotao, QIU Yafeng. Structure design and analysis of monocular low illumination CMOS night vision device for helmet[J]. Infrared Technology, 2016, 38(8): 653-658. http://hwjs.nvir.cn/article/id/hwjs201608005
[2] 白瑜, 程习敏, 冯成, 等. 拼接式全景头盔红外夜视仪系统设计[J]. 光电技术应用, 2014, 29(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201401008.htm BAI Yu, CHENG Ximin, FENG Cheng, et al. Design of segmented panoramic helmet-mounted infrared night vision[J]. Electro-Optic Technology Application, 2014, 29(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYG201401008.htm
[3] 王思博. 三通道微光夜视仪光学系统设计[D]. 长春: 长春理工大学, 2014. WANG Sib. Optical of Three Channels of Night Vision Instrument[D]. Changchun: Changchun University of Science Technology, 2014.
[4] 史训豪. 夜视仪在单兵观瞄系统中的应用[J]. 科技风, 2019(10): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201928018.htm SHI Xunhao. Application of night vision device in single soldier observation and aiming system[J]. Technology Wind, 2019(10): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201928018.htm
[5] 李力, 李训牛. 直升机飞行员头盔夜视系统视觉及舒适性优化技术分析[J]. 红外技术, 2017, 39(10): 890-896. http://hwjs.nvir.cn/article/id/hwjs201710004 LI Li, LI Xunniu. Analysis of optimization technology for a night vision system for helicopter pilots with special focus on the visual characteristics and comfort[J]. Infrared Technology, 2017, 39(10): 890-896. http://hwjs.nvir.cn/article/id/hwjs201710004
[6] 许为. 航空夜视镜的人机工效学问题[J]. 国际航空, 1991(12): 52-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHHK200504027.htm XU Wei. Ergonomic problems of aerial night vision goggles[J]. International Aviation, 1991(12): 52-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHHK200504027.htm
-
期刊类型引用(12)
1. 王小栋,吕通发,鲍明正,何永春,辛鹏,吴涛. 基于改进YOLO v5方法的电力设备红外图像识别方法. 红外技术. 2024(06): 722-727 . 本站查看
2. 孔凡梅,刘璞,赖昌生. 傅里叶描述子在AIDS患者智能化舌诊中的应用. 医学信息. 2023(04): 38-43 . 百度学术
3. 赵利鸿,高强,李大华,于晓. 基于复杂红外图像的多个绝缘子提取方法. 激光杂志. 2021(05): 62-67 . 百度学术
4. 刘正庭,尹骏刚,李凯迪,汪宵飞,王欣,万勋,姚建刚. 基于分水岭算法的绝缘子串红外图像分割方法. 电瓷避雷器. 2020(02): 216-221+228 . 百度学术
5. 许晓路,周文,周东国,朱诗沁,倪辉,罗传仙. 基于PCNN分层聚类迭代的故障区域自动提取方法. 红外技术. 2020(08): 809-814 . 本站查看
6. 赵利鸿,高强,于晓,李大华. 基于红外图像的绝缘子提取方法. 红外技术. 2020(09): 840-845 . 本站查看
7. 魏豪,张凯,郑磊,曹源,张丁文. 基于HOG-RCNN的电力巡检红外图像目标检测. 红外与激光工程. 2020(S2): 242-247 . 百度学术
8. 周正钦,冯振新,周东国,许晓路,谷凯凯. 基于扩展Meanshift电气设备发热故障区域提取方法. 红外技术. 2019(01): 78-83 . 本站查看
9. 冯振新,许晓路,周东国,江翼,丁国成. 基于Canny算子的简化PCNN电力故障区域提取方法. 红外技术. 2019(07): 634-639 . 本站查看
10. 李晓峰,庞先海,顾朝敏,董驰. 基于红外图像的变电站巡检故障分析. 信息技术. 2019(08): 121-124+129 . 百度学术
11. 李伟,王军,俞跃. 基于可见光匹配矩阵的电气部件故障红外自动识别算法. 红外技术. 2019(11): 1047-1056 . 本站查看
12. 周可慧,廖志伟,肖异瑶,肖立军,蓝鹏昊,万新宇. 基于改进CNN的电力设备红外图像分类模型构建研究. 红外技术. 2019(11): 1033-1038 . 本站查看
其他类型引用(8)