半导体光电阴极的研究进展

Progress in Research on Semiconductor Photocathodes

  • 摘要: 半导体光电阴极具有量子效率高、暗电流小的优点,被广泛应用于光电倍增管、像增强器等各类真空光电探测和成像器件,促进了极弱光的超快探测和成像技术的发展。另外作为能够产生高品质电子束的真空电子源,用于加速器光注入器、电子显微镜等科学装置。本文首先介绍了目前常用半导体光电阴极的分类以及在真空光电探测成像、真空电子源领域的具体应用。然后对碱金属碲化物光电阴极、碱金属锑化物光电阴极、GaAs光电阴极三类典型半导体光电阴极的制备技术进行了总结,并介绍了微纳结构、低维材料、单晶外延等新技术在半导体光电阴极研制中的应用。最后对半导体光电阴极的技术发展进行了展望。

     

    Abstract: Semiconductor photocathodes with high quantum efficiency and low dark current are widely used in various vacuum photoelectric detection and imaging devices, such as photomultiplier tubes and image intensifiers, promoting the development of ultrafast detection and imaging technology for extremely weak light. Vacuum electron sources capable of producing high-quality electron beams are used in accelerator photoinjectors, electron microscopes, and other scientific equipment. First, this review introduces the classification of semiconductor photocathodes and their applications in the fields of vacuum photoelectric detection and imaging and vacuum electron sources. Then, preparation techniques for three types of typical semiconductor photocathodes, namely, alkali telluride, alkali antimonide, and GaAs photocathodes, are summarized. Subsequently, applications of new technologies, such as micro-nano structures, low-dimensional materials, and single-crystal epitaxy, in the development of semiconductor photocathodes are introduced. Finally, the technical development of the semiconductor photocathodes is discussed.

     

/

返回文章
返回