留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体光电阴极的研究进展

张益军

张益军. 半导体光电阴极的研究进展[J]. 红外技术, 2022, 44(8): 778-791.
引用本文: 张益军. 半导体光电阴极的研究进展[J]. 红外技术, 2022, 44(8): 778-791.
ZHANG Yijun. Progress in Research on Semiconductor Photocathodes[J]. Infrared Technology , 2022, 44(8): 778-791.
Citation: ZHANG Yijun. Progress in Research on Semiconductor Photocathodes[J]. Infrared Technology , 2022, 44(8): 778-791.

半导体光电阴极的研究进展

基金项目: 

国家自然科学基金 U2141239

国家自然科学基金 61771245

微光夜视技术重点实验室基金 J20200102

详细信息
    作者简介:

    张益军(1984-),男,博士,副教授,博士生导师,主要从事光电发射材料与器件研究。E-mail: zhangyijun423@njust.edu.cn

  • 中图分类号: TN223

Progress in Research on Semiconductor Photocathodes

  • 摘要: 半导体光电阴极具有量子效率高、暗电流小的优点,被广泛应用于光电倍增管、像增强器等各类真空光电探测和成像器件,促进了极弱光的超快探测和成像技术的发展。另外作为能够产生高品质电子束的真空电子源,用于加速器光注入器、电子显微镜等科学装置。本文首先介绍了目前常用半导体光电阴极的分类以及在真空光电探测成像、真空电子源领域的具体应用。然后对碱金属碲化物光电阴极、碱金属锑化物光电阴极、GaAs光电阴极三类典型半导体光电阴极的制备技术进行了总结,并介绍了微纳结构、低维材料、单晶外延等新技术在半导体光电阴极研制中的应用。最后对半导体光电阴极的技术发展进行了展望。
  • 图  1  常用半导体光电阴极按照长波截止波长的分类

    Figure  1.  Classification of common semiconductor photocathodes according to longwave cut-off wavelength

    图  2  几种常用半导体光电阴极的透射式光谱响应曲线[12-14]:(a) 碱金属碲化物、碱金属锑化物和GaAs类光电阴极;(b) 紫外光电阴极

    Figure  2.  Transmission-mode spectral response curves of several common semiconductor photocathodes[12-14]: (a) Alkali telluride, alkali antimonide, and GaAs-based photocathodes; (b) Ultraviolet photocathodes

    图  3  半导体光电阴极在光电探测成像领域的应用

    Figure  3.  Application of semiconductor photocathode in the field of photoelectric detection and imaging

    图  4  半导体光电阴极在真空电子源领域的应用

    Figure  4.  Application of semiconductor photocathode in the field of vacuum electron source

    图  5  金属基底上碱金属碲化物光电阴极的制备:(a) 装置示意图[34];(b) 共沉积法的工作稳定性[32];(c) K-Cs-Te光电阴极的制备工艺[34];(d) K-Cs-Te光电阴极的工作稳定性[35]

    Figure  5.  Preparation of alkali telluride photocathode on metal substrate: (a) Schematic diagram of setup[34]; (b) Operation stability of co-deposition method[32]; (c) Preparation process of K-Cs-Te photocathode[34]; (d) Operation stability of K-Cs-Te photocathode[35]

    图  6  玻璃基底上碱金属碲化物光电阴极的制备装置示意图[37]

    Figure  6.  Schematic diagram of preparation setup for alkali telluride photocathode on glass substrate[37]

    图  7  采用共沉积法制备的K2CsSb光电阴极[44]:(a) 表面粗糙度;(b) 量子效率

    Figure  7.  K2CsSb photocathode prepared by co-deposition method[44]: (a) Surface roughness; (b) Quantum efficiency

    图  8  采用变掺杂技术制备的K2CsSb光电阴极[45]:(a) 结构示意图;(b) K/Sb共蒸镀;(c) Cs蒸镀;(d) 量子效率曲线

    Figure  8.  K2CsSb photocathode prepared by variably-doped technique[45]: (a) Structural diagram; (b) K/Sb co-deposition step; (c) Cs evaporation step; (d) Quantum efficiency curves

    图  9  Na-K-Sb光电阴极和Na-K-Sb-Cs光电阴极的制备:(a) 停止进Na后的K/Sb交替激活[46];(b) Na-K-Sb表面的Cs/Sb交替激活[47]

    Figure  9.  Preparation of Na-K-Sb photocathode and Na-K-Sb-Cs photocathode: (a) K/Sb alternate activation after stopping Na[46]; (b) Cs/Sb alternate activation on Na-K-Sb surface[47]

    图  10  GaAs光电阴极Cs/O激活过程[54]:(a) O过量激活法;(b) Cs适中过量法;(c) 名古屋Cs完全过量法;(d) 改进Cs完全过量法

    Figure  10.  Cs/O activation process of GaAs photocathode[54]: (a) O excess activation method; (b) Cs moderate excess method; (c) Nagoya Cs complete-overdose method; (d) Improved Cs complete-excess method

    图  11  GaAs光电阴极Cs/NF3激活过程[58]:(a) 激活过程中光电流变化;(b) 连续光照下光电流衰减

    Figure  11.  Cs/NF3 activation process of GaAs photocathode[58]: (a) photocurrent change during activation; (b) photocurrent decay under continuous illumination

    图  12  采用Sb源和Te源的GaAs光电阴极激活过程[64-65]:(a) Cs-Sb激活;(b) Cs-O-Sb激活;(c) Cs-Sb-O激活;(d) Cs-Te激活;(e) Cs-O-Te激活

    Figure  12.  Activation process of GaAs photocathodes using Sb and Te sources[64-65]: (a) Cs-Sb activation; (b) Cs-O-Sb activation; (c) Cs-Sb-O activation; (d) Cs-Te activation; (e) Cs-O-Te activation

    图  13  采用透射衍射光栅结构的多碱光电阴极[68]:(a) 结构示意图;(b) 光谱响应提升效果

    Figure  13.  Multi-alkali photocathode with transmission diffraction grating structure[68]: (a) Structure diagram; (b) Spectral response improvement

    图  14  石墨烯应用于K2CsSb光电阴极制备:(a) 透-反射真空器件[69];(b) 不同基底量子效率提高效果[70]

    Figure  14.  Graphene used in the preparation of K2CsSb photocathode: (a) Transmission-reflection mode vacuum tube[69]; (b) QE improvement on different substrates[70]

    图  15  单晶Cs3Sb光电阴极的制备[72]:(a) 外延生长过程;(b) 量子效率

    Figure  15.  Preparation of single-crystal Cs3Sb photocathode[72]: (a) Epitaxial growth process; (b) Quantum efficiency

  • [1] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Annalen der Physik, 1887, 267: 983-1000. doi:  10.1002/andp.18872670827
    [2] EINSTEIN A. On a heuristic viewpoint concerning the production and transformation of light[J]. Annalen der Physik, 1905, 17: 132-148.
    [3] SPICER W E. Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds[J]. Physical Review, 1958, 112(1): 114-122. doi:  10.1103/PhysRev.112.114
    [4] SOMMER A H. Photoemissive Materials: Preparation, Properties and Uses[M]. New York: John Wiley & Sons, 1968: 1-4.
    [5] XIANG R, TEICHERT J. Photocathodes for high brightness photo injectors[J]. Physics Procedia, 2015, 77: 58-65. doi:  10.1016/j.phpro.2015.11.010
    [6] LORUSSO A. Overview and development of metallic photocathodes prepared by laser ablation[J]. Applied Physics A, 2013, 110: 869-875. doi:  10.1007/s00339-012-7168-z
    [7] SRINIVASAN-RAO T, FISCHER J, TSANG T. Photoemission studies on metals using picosecond ultraviolet laser pulses[J]. Journal of Applied Physics, 1991, 69(5): 3291-3296. doi:  10.1063/1.348550
    [8] XIE H. Overview of the semiconductor photocathode research in China[J]. Micromachines, 2021, 12(11): 1376. doi:  10.3390/mi12111376
    [9] 唐光华, 戴丽英, 钟伟俊, 等. 紫外光电阴极研究进展[J]. 真空电子技术, 2011(6): 5-11. doi:  10.3969/j.issn.1002-8935.2011.06.002

    TANG Guanghua, DAI Liying, ZHONG Weijun, et al. Development of ultraviolet photocathodes research[J]. Vacuum Electronics, 2011(6): 5-11. doi:  10.3969/j.issn.1002-8935.2011.06.002
    [10] CHANLEK N, HERBERT J D, JONES R M, et al. The degradation of quantum efficiency in negative electron affinity GaAs photocathodes under gas exposure[J]. Journal of Physics D: Applied Physics, 2014, 47(5): 055110. doi:  10.1088/0022-3727/47/5/055110
    [11] MARTINELLI R U, FISHER D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices[J]. Proceedings of the IEEE, 1974, 62(10): 1339-1360. doi:  10.1109/PROC.1974.9626
    [12] Hamamatsu Photonics KK. High-speed gated I. I. unit selection guide [DB/OL]. http://www.hamamatsu.com.cn/UserFiles/DownFile/Related/GateII_TII0006E.pdf, 2014.
    [13] REN Bin, GUO Hui, SHI Feng, et al. A theoretical and experimental evaluation of Ⅲ-nitride solar-blind UV photocathode[J]. Chinese Physics B, 2017, 26(8): 088504. doi:  10.1088/1674-1056/26/8/088504
    [14] 唐家业, 方盛江, 颜士飞, 等. 日盲紫外真空探测器件和组件技术研究[J]. 真空电子技术, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm

    TANG Jiaye, FANG Shengjiang, YAN Shifei, et al. Technique research on solar-blind ultraviolet vacuum detector and assembly[J]. Vacuum Electronics, 2022(2): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ202202006.htm
    [15] SUYAMA M, NAKAMURA K. Recent progress of photocathodes for PMTs[C]//International Workshop on New Photon Detectors, 2010: PD09 (DOI: 10.22323/1.090.0013).
    [16] 田进寿. 条纹及分幅相机技术发展概述[J]. 强激光与粒子束, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm

    TIAN Jinshou. Introduction to development of streak and framing cameras[J]. High Power Laser and Particle Beams, 2020, 32: 112003. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY202011003.htm
    [17] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [18] CHRZANOWSKI K. Review of night vision technology[J]. Opto-Electronics Review, 2015, 21(2): 149-164.
    [19] 田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    TIAN Jinsheng. New development of low light level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
    [20] TRIVENI R, DOWELL D H. An Engineering Guide to Photoinjectors[M]. North Charleston: Create Space Independent Publishing Platform, 2013.
    [21] RUSSELL S J. Overview of high-brightness, high-average-current photoinjectors for FELs[J]. Nuclear Instruments and Methods in Physics Research Section A, 2003, 507: 304-309. doi:  10.1016/S0168-9002(03)00934-3
    [22] XIANG R, ARNOLD A, BUETTIG H, et al. Cs2Te normal conducting photocathodes in the superconducting rf gun[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13(4): 043501. doi:  10.1103/PhysRevSTAB.13.043501
    [23] KARKARE S, BOULET L, CULTRERA L, et al. Ultrabright and ultrafast Ⅲ-Ⅴ semiconductor photocathodes[J]. Physical Review Letters, 2014, 112(9): 097601. doi:  10.1103/PhysRevLett.112.097601
    [24] SINCLAIR C K, ADDERLEY P A, DUNHAM B M, et al. Development of a high average current polarized electron source with long cathode operational lifetime[J]. Physical Review Special Topics-Accelerators and Beams, 2007, 10(2): 023501. doi:  10.1103/PhysRevSTAB.10.023501
    [25] CULTRERA L, MAXSON J, BAZAROV I, et al. Photocathode behavior during high current running in the Cornell energy recovery linac photoinjector[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14(12): 120101. doi:  10.1103/PhysRevSTAB.14.120101
    [26] MUSUMECI P, NAVARRO J G, ROSENZWEIG J B, et al. Advances in bright electron sources[J]. Nuclear Instruments and Methods in Physics Research Section A, 2018, 907: 209-220. doi:  10.1016/j.nima.2018.03.019
    [27] CHANG T H P, MANKOS M, LEE K Y, et al. Multiple electron-beam lithography[J]. Microelectronic Engineering, 2001, 57: 117-135.
    [28] MACHUCA F, SUN Y, LIU Z, et al. Prospect for high brightness Ⅲ–nitride electron emitter[J]. Journal of Vacuum Science & Technology B, 2000, 18(6): 3042-3046.
    [29] MORISHITA H, OHSHIMA T, KUWAHARA M, et al. Resolution improvement of low-voltage scanning electron microscope by bright and monochromatic electron gun using negative electron affinity photocathode[J]. Journal of Applied Physics, 2020, 127(16): 164902. doi:  10.1063/5.0005714
    [30] KUWAHARA M, TAKEDA Y, SAITOH K, et al. Development of spin-polarized transmission electron microscope[C]//Journal of Physics: Conference Series, 2011, 298: 012016.
    [31] DI BONA A, SABARY F, VALERI S, et al. Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes[J]. Journal of Applied Physics, 1996, 80(5): 3024-3030. doi:  10.1063/1.363161
    [32] SUBERLUCQ G. Technological challenges for high brightness photo-injectors[C]//Proceedings of EPAC, 2004: 64-68.
    [33] GAOWEI M, SINSHEIMER J, STROM D, et al. Codeposition of ultrasmooth and high quantum efficiency cesium telluride photocathodes[J]. Physical Review Accelerators and Beams, 2019, 22(7): 073401. doi:  10.1103/PhysRevAccelBeams.22.073401
    [34] BISERO D, VAN OERLE B M, ERNST G J, et al. High efficiency photoemission from Cs-K-Te[J]. Applied Physics Letters, 1997, 70(12): 1491-1493. doi:  10.1063/1.118362
    [35] VERSCHUUR J W J, VAN OERLE B M, ERNST G J, et al. Aspects of accelerator-based photoemission[J]. Nuclear Instruments and Methods in Physics Research Section B, 1998, 139: 541-545. doi:  10.1016/S0168-583X(97)00953-1
    [36] 李晓峰, 赵学峰, 褚祝军, 等. Rb2Te与Cs2Te日盲紫外阴极比较研究[J]. 真空科学与技术学报, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm

    LI Xiaofeng, ZHAO Xuefeng, CHU Zhujun, et al. Comparison study of Rb2Te and Cs2Te solar blind ultraviolet cathodes[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(8): 808-813. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201408007.htm
    [37] 李晓峰, 赵学峰, 冯辉, 等. 一种用于紫外像增强器的碲钾铯光电阴极: 中国: 201410107207.9 [P]. 2017.

    LI Xiaofeng, ZHAO Xuefeng, Feng Hui, et al. Tellurium potassium caesium photocathode used for ultraviolet image intensifier: China: 201410107207.9 [P]. 2017.
    [38] 李晓峰, 赵学峰, 陈其钧, 等. K2Te(Cs)日盲紫外光电阴极研究[J]. 光子学报, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm

    LI Xiaofeng, ZHAO Xuefeng, CHEN Qijun, et al. Study on K2Te(Cs) solar blind ultraviolet cathode[J]. Acta Photonica Sinica, 2014, 43(6): 0625003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201406026.htm
    [39] 李晓峰, 赵学峰, 张昆林, 等. Rb2Te(Cs)日盲紫外光电阴极研究[J]. 红外技术, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011

    LI Xiaofeng, ZHAO Xuefeng, ZHANG Kunlin, et al. Study on Rb2Te(Cs) solar blind ultraviolet cathode[J]. Infrared Technology, 2013, 35(9): 581-586. http://hwjs.nvir.cn/article/id/hwjs201309011
    [40] DOWELL D H, BETHEL S Z, FRIDDELL K D. Results from the average power laser experiment photocathode injector test[J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 356: 167-176. doi:  10.1016/0168-9002(94)01327-6
    [41] 谢华木, 王尔东. 作为加速器电子源的高量子效率K2CsSb光阴极制备工艺研究[J]. 真空, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm

    XIE Huamu, WANG Erdong. Research on fabrication recipe of high quantum efficiency K2CsSb photocathode[J]. Vacuum, 2017, 54(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZK201701016.htm
    [42] LI X D, JIANG Z G, GU Q, et al. Preliminary systematic study of the temperature effect on the K-Cs-Sb photocathode performance based on the K and Cs co-evaporation[J]. Chinese Physics Letters, 2020, 37(1): 012901. doi:  10.1088/0256-307X/37/1/012901
    [43] DING Z, GAOWEI M, SINSHEIMER J, et al. In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation[J]. Journal of Applied Physics, 2017, 121: 055305. doi:  10.1063/1.4975113
    [44] FENG J, KARKARE S, NASIATKA J, et al. Near atomically smooth alkali antimonide photocathode thin films[J]. Journal of Applied Physics, 2017, 121: 044904. doi:  10.1063/1.4974363
    [45] SUN J, JIN M, WANG X, et al. Enhanced photoemission capability of bialkali photocathodes for 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 971: 164021. doi:  10.1016/j.nima.2020.164021
    [46] CULTRERA L, KARKARE S, LILLARD B, et al. Growth and characterization of rugged sodium potassium antimonide photocathodes for high brilliance photoinjector[J]. Applied Physics Letters, 2013, 103: 103504. doi:  10.1063/1.4820132
    [47] CULTRERA L, GULLIFORD C, BARTNIK A, et al. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light[J]. Applied Physics Letters, 2016, 108: 134105. doi:  10.1063/1.4945091
    [48] 李朝木, 李谷川, 贾文. 多碱光电阴极[J]. 真空与低温, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm

    LI Chaomu, LI Guchuan, JIA Wen. Multialkali photocathode[J]. Vacuum and Cryogenics, 1992, 11(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW199201003.htm
    [49] 曾桂林, 周立伟, 李晓峰. 多碱光阴极玻璃基底表面处理研究[J]. 激光与红外, 2005, 35(7): 508-511. doi:  10.3969/j.issn.1001-5078.2005.07.015

    ZENG Guilin, ZHOU Liwei, LI Xiaofeng. Research on surface treatment of multalkali photocathode glass substrate[J]. Lase & Infrared, 2005, 35(7): 508-511. doi:  10.3969/j.issn.1001-5078.2005.07.015
    [50] 李晓峰, 陆胜林, 杨文波, 等. Na2KSb膜层组份均匀性对多碱阴极灵敏度的影响研究[J]. 光子学报, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm

    LI Xaofeng, LU Shenglin, YANG Wenbo, et al. Component uniformity study on Na2KSb film of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(10): 1171-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201210007.htm
    [51] 赵恒, 常乐, 李廷涛, 等. 多碱光电阴极的Cs-O激活技术研究[J]. 红外技术, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013

    ZHAO Heng, CHANG Le, LI Tingtao, et al. Study on Cs-O activation technology of multi-alkali photocathode[J]. Infrared Technology, 2018, 40(7): 695-700. http://hwjs.nvir.cn/article/id/hwjs201807013
    [52] 常本康. 多碱阴极的结构分析与研究[J]. 应用光学, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm

    CHANG Benkang. Study and analysis of structure on multialkali photocathode[J]. Journal of Applied Optics, 1984(4): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX198404001.htm
    [53] 杜晓晴, 常本康, 邹继军. Cs、O激活方式对GaAs光电阴极的影响[J]. 真空科学与技术学报, 2006, 26(1): 1-7. doi:  10.3969/j.issn.1672-7126.2006.01.001

    DU Xiaoqing, CHANG Benkang, ZOU Jijun. Influence of Cs, O activation modes on GaAs photocathode[J]. Chinese Journal of Vacuum Science and Technology, 2006, 26(1): 1-7. doi:  10.3969/j.issn.1672-7126.2006.01.001
    [54] ZHANG Yijun, ZHANG Kaimin, LI Shan, et al. Effect of excessive Cs and O on activation of GaAs (100) surface: from experiment to theory[J]. Journal of Applied Physics, 2020, 128: 173103. doi:  10.1063/5.0028042
    [55] LIU Z, SUN Y, PETERSON S, et al. Photoemission study of Cs-NF3 activated GaAs (100) negative electron affinity photocathodes[J]. Applied Physics Letters, 2008, 92: 241107. doi:  10.1063/1.2945276
    [56] PASTUSZKA S, TEREKHOV A S, WOLF A. 'Stable to unstable' transition in the (Cs, O) activation layer on GaAs (100) surfaces with negative electron affinity in extremely high vacuum[J]. Applied Surface Science, 1996, 99(4): 361-365. doi:  10.1016/0169-4332(96)00106-7
    [57] CHANLEK N, HERBERT J D, JONES R M, et al. High stability of negative electron affinity gallium arsenide photocathodes activated with Cs and NF3[J]. Journal of Physics D: Applied Physics, 2015, 48(37): 375102. doi:  10.1088/0022-3727/48/37/375102
    [58] LI Shan, ZHANG Yijun, ZHANG Kaimin, et al. Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs (1 0 0)-β2 (2× 4) surface: From DFT simulation to experiment[J]. Journal of Colloid and Interface Science, 2022, 613: 117-125. doi:  10.1016/j.jcis.2022.01.013
    [59] SUN Y, KIRBY R E, MARUYAMA T, et al. The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li, and NF3[J]. Applied Physics Letters, 2009, 95: 174109. doi:  10.1063/1.3257730
    [60] MULHOLLAN G A, BIERMAN J C. Enhanced chemical immunity for negative electron affinity GaAs photoemitters[J]. Journal of Vacuum Science & Technology A, 2008, 26(5): 1195-1197.
    [61] KURICHIYANIL N, ENDERS J, FRITZSCHE Y, et al. A test system for optimizing quantum efficiency and dark lifetime of GaAs photocathodes[J]. Journal of Instrumentation, 2019, 14: P08025. doi:  10.1088/1748-0221/14/08/P08025
    [62] BAE J K, CULTRERA L, DIGIACOMO P, et al. Rugged spin-polarized electron sources based on negative electron affinity GaAs photocathode with robust Cs2Te coating[J]. Applied Physics Letters, 2018, 112: 154101. doi:  10.1063/1.5026701
    [63] CULTRERA L, GALDI A, BAE J K, et al. Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: trade-offs between efficiency, spin polarization, and lifetime[J]. Physical Review Accelerators and Beams, 2020, 23(2): 023401. doi:  10.1103/PhysRevAccelBeams.23.023401
    [64] BAE J K, GALDI A, CULTRERA L, et al. Improved lifetime of a high spin polarization superlattice photocathode[J]. Journal of Applied Physics, 2020, 127: 124901. doi:  10.1063/1.5139674
    [65] BISWAS J, WANG E, GAOWEI M, et al. High quantum efficiency GaAs photocathodes activated with Cs, O2, and Te[J]. AIP Advances, 2021, 11: 025321. doi:  10.1063/5.0026839
    [66] 李晓峰, 李莉, 杨文波, 等. 多碱光电阴极膜厚对阴极灵敏度的影响研究[J]. 红外技术, 2012, 34(7): 422-426. doi:  10.3969/j.issn.1001-8891.2012.07.009

    LI Xiaofeng, LI Li, YAN Wenbo, et al. Study on sensitivity of different thickness of multi-alkali photocathode[J]. Infrared Technology, 2012, 34(7): 422-426. doi:  10.3969/j.issn.1001-8891.2012.07.009
    [67] NÜTZEL G, LAVOUTE P. Semi-transparent photocathode with improved absorption rate: United States: 9960004B2[P]. 2018.
    [68] 李晓峰, 赵恒, 张彦云, 等. 高性能超二代像增强器及发展[J]. 红外技术, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189

    LI Xiaofeng, ZHAO Heng, ZHANG Yanyun, et al. High performance super second generation image intensifier and its further development[J]. Infrared Technology, 2021, 43(9): 811-816. http://hwjs.nvir.cn/article/id/5a0a0141-171d-410c-bb3f-ac14dc76e189
    [69] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Active bialkali photo-cathodes on free-standing graphene substrates[J]. npj 2D Materials and Applications, 2017(1): 12.
    [70] YAMAGUCHI H, LIU F, DEFAZIO J, et al. Quantum efficiency enhancement of bialkali photocathodes by an atomically thin layer on substrates[J]. Physica Status Solidi A, 2019, 216: 1900501. doi:  10.1002/pssa.201900501
    [71] GALDI A, BALAJKA J, DEBENEDETTI W J I, et al. Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates[J]. Applied Physics Letters, 2021, 118: 244101. doi:  10.1063/5.0053186
    [72] PARZYCK C T, GALDI A, NANGOI J K, et al. Single-crystal alkali antimonide photocathodes: high efficiency in the ultrathin limit[J]. Physical Review Letters, 2022, 128(11): 114801. doi:  10.1103/PhysRevLett.128.114801
  • 加载中
图(15)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  17
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-07-19
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回