RBNSM:一种复杂背景下红外弱小目标检测新方法

RBNSM: a New Method for Infrared Dim and Small Target Detection in Complex Backgrounds

  • 摘要: 弱小目标检测是红外探测与跟踪任务中的经典难题。针对复杂背景下红外弱小目标普遍存在检测率低、虚警率高的问题,提出一种基于区域双邻域显著图(Regional Bi-Neighborhood Saliency Map,RBNSM)的复杂背景红外弱小目标检测新方法。利用弱小目标的局部先验特性定义滑动窗口并划分为多个单元,计算中心单元前若干个最大灰度的均值来凸显弱目标;分别构建中心单元的相接邻域和相隔邻域并计算各自的灰度均值,进而,从不同方向上提取两邻域显著图并点乘二者以进一步抑制杂波背景、增强弱小目标;最后,通过自适应提取准确检测目标。多种典型红外复杂背景图像和SIRST数据集检测结果表明:与7种代表性方法相比,RBNSM在复杂背景下具有更好的检测性能与杂波抑制能力。

     

    Abstract: Infrared dim and small target (IRDST) detection is a longstanding and challenging problem in infrared search and track systems. To address the problems of a low detection rate and high false alarm rate for dim and small targets in complex backgrounds, a method is proposed for detecting IRDSTs using a regional bi-neighborhood saliency map (RBNSM). First, using the local a-priori property of the weak target, a sliding window is defined and divided into multiple cells before the mean value of the first maximum gray levels of the central cell is calculated to highlight the weak target. Then, the adjacent and spaced neighbors of the central cell are constructed and the mean value of their respective gray levels is calculated. Subsequently, the salient maps of the two neighbors are the extracted from different directions and multiplied point by point to further suppress the clutter background and enhance the weak target. Finally, the target is accurately detected by adaptive extraction. The detection results of various typical IR complex background images and SIRST datasets show that RBNSM has a better detection performance and clutter suppression ability in complex backgrounds than the seven representative methods.

     

/

返回文章
返回