留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于局部熵参考预处理的RPCA红外小目标检测

薛锡瑞 黄树彩 马佳顺 李宁

薛锡瑞, 黄树彩, 马佳顺, 李宁. 基于局部熵参考预处理的RPCA红外小目标检测[J]. 红外技术, 2021, 43(7): 649-657.
引用本文: 薛锡瑞, 黄树彩, 马佳顺, 李宁. 基于局部熵参考预处理的RPCA红外小目标检测[J]. 红外技术, 2021, 43(7): 649-657.
XUE Xirui, HUANG Shucai, MA Jiashun, LI Ning. RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing[J]. Infrared Technology , 2021, 43(7): 649-657.
Citation: XUE Xirui, HUANG Shucai, MA Jiashun, LI Ning. RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing[J]. Infrared Technology , 2021, 43(7): 649-657.

基于局部熵参考预处理的RPCA红外小目标检测

基金项目: 

国家自然科学基金 61573374

详细信息
    作者简介:

    薛锡瑞(1997-),男,硕士研究生,研究方向为红外弱小目标检测,E-mail:13186032316@163.com

  • 中图分类号: TP751.1

RPCA Infrared Small Target Detection Based on Local Entropy Reference in Preprocessing

  • 摘要: 以图像非局部相似性为基础,利用图像分块重组以获得低秩块图像,是将鲁棒主成分分析算法(robust principal component analysis,RPCA)应用到单帧图像红外小目标检测的基本方法。本文介绍了RPCA算法在单帧图像红外小目标检测的应用流程,分析了不同图像背景下各种分块方法的影响。为解决复杂背景下图像分块窗口和滑动步长难以选择的问题,提出了以图像分块最小局部熵的较大值为参考的选择方法。实验结果表明,通过计算图像的分块局部熵,以最小局部熵的较大值为参考,选择RPCA算法预处理方案,能使单帧红外图像小目标检测达到更好的效果,弥补了工程人员缺少RPCA算法应用经验的不足。
  • 图  1  单帧红外图像RPCA算法处理流程

    Figure  1.  Processing flow of single frame infrared image using RPCA algorithm

    图  2  不同背景图像及其块图像奇异值

    Figure  2.  Different background images and their block image singular value

    图  3  步长影响分析

    Figure  3.  Step length influence analysis

    图  4  窗口影响分析

    Figure  4.  Window size influence analysis

    图  5  最小局部熵随窗口变化

    Figure  5.  Minimum local entropy change with window size

    图  6  原始红外图像

    Figure  6.  Original infrared image

    图  7  背景抑制算法检测结果

    Figure  7.  Background suppression algorithm detection results

    图  8  随机选择(40×40, 4)预处理RPCA检测结果

    Figure  8.  Random selection(40×40, 4) preprocessed RPCA image detection results

    图  9  局部熵参考RPCA检测结果

    Figure  9.  Local entropy reference RPCA detection result

    表  1  背景抑制算法检测结果

    Table  1.   Background suppression algorithm detection results

    Evaluation Index Max Median Tophat
    SCRG Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    29.7929
    37.4023
    23.3930
    4.3761
    6.9933
    2.9932
    BSF Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    34.7819
    43.4285
    34.1074
    26.7169
    30.7303
    27.1665
    下载: 导出CSV

    表  2  不同预处理RPCA检测结果

    Table  2.   RPCA detection results of different pretreatments

    Evaluation Index (12×12, 4) (16×16, 4) (20×20, 4) (24×24, 4)
    SCRG Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    32.6057
    18.0824
    38.1424
    41.6785
    16.6169
    40.2834
    44.5846
    13.4236
    40.1180
    36.5349
    13.6778
    39.5480
    BSF Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    40.3590
    43.3497
    54.9828
    49.9203
    42.2859
    57.8680
    52.9095
    38.6833
    58.0979
    45.2896
    37.4606
    56.5966
    (30×30, 7) (40×40, 4) (50×50, 6) (60×60, 4)
    SCRG Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    28.7508
    14.5421
    38.1673
    23.0925
    15.5531
    39.0631
    20.5614
    15.8911
    29.5542
    20.2152
    16.7226
    35.7327
    BSF Fig.6(a)
    Fig.6(b)
    Fig.6(c)
    35.4541
    30.6043
    51.0703
    32.7816
    33.3790
    56.4791
    27.3244
    27.8227
    43.2125
    28.7974
    29.6281
    50.4376
    下载: 导出CSV

    表  3  各算法检测时间

    Table  3.   Detection time of each algorithm  s

    Max Median Tophat RPCA (Local entropy reference)
    Fig.6(a) 0.7942 0.8649 18.5329
    Fig.6(b) 0.7895 0.6971 15.7956
    Fig.6(c) 0.7969 0.5662 17.5864
    下载: 导出CSV
  • [1] Dehghani A, Pourmohammad A. Small target detection and tracking based on the background elimination and Kalman filter[C]//2015 The International Symposium on Artificial Intelligence and Signal Processing, 2015: 328-333.
    [2] YANG C, MA J, QI S, et al. Directional support value of Gaussian transformation for infrared small target detection[J]. Applied Optics, 2015, 54(9): 2255-2265. doi:  10.1364/AO.54.002255
    [3] WU S C, ZUO Z R. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared and Millimeter Waves, 2019, 38(3): 371-380.
    [4] Deshpande S D, Er M H, Venkateswarlu R, et al. Max-mean and max-median filters for detection of small targets[C]//Signal and Data Processing of Small Targets 1999. International Society for Optics and Photonics, 1999, 3809: 74-83.
    [5] WANG P, TIAN J W, GAO C Q. Infrared small target detection using directional highpass filters based on ls-svm[J]. Electronics Letters, 2009, 45(3): 156-158. doi:  10.1049/el:20092206
    [6] ZHANG H, LEI Z H, DING XH. An improved method of median filter[J]. Journal of Image and Graphics, 2004, 9(4): 408-411. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTB200404004.htm
    [7] BAI X Z, ZHOU F G, XIE Y C, et al. Modified top-hat transformation based on contour structuring element to detect infrared small target[C]//IEEE Conference on Industrial Electronics and Applications, 2008, 3: 575-579.
    [8] Wright J, Allen Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi:  10.1109/TPAMI.2008.79
    [9] 史加荣, 郑秀云, 周水生. 矩阵补全算法研究进展[J]. 计算机科学, 2014, 41(4): 13-20. doi:  10.3969/j.issn.1002-137X.2014.04.003

    SHI J R, ZHENG X Y, ZHOU S S. Research Progress in Matrix Completion Algorithms[J]. Computer Science, 2014, 41(4): 13-20. doi:  10.3969/j.issn.1002-137X.2014.04.003
    [10] 陈川, 纪晓佳, 陈柘. 基于低秩矩阵恢复交通视频背景重建性能评价[J]. 计算机工程与设计, 2017, 38(5): 1301-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201705034.htm

    CHEN C, JI X J, CHEN Z. Performance Evaluation of Traffic Video Background Reconstruction Based on Low-rank Matrix Recovery[J]. Computer Engineering and Design, 2017, 38(5): 1301-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201705034.htm
    [11] 杨敏, 安振英. 基于低秩矩阵恢复的视频背景建模[J]. 南京邮电大学学报, 2013, 33(2): 86-96. doi:  10.3969/j.issn.1673-5439.2013.02.015

    YANG M, AN Z Y. Video Background Modeling Using Low-rank Matrix Recovery[J]. Journal of Nanjing University of Posts and Telecommunications, 2013, 33(2): 86-96. doi:  10.3969/j.issn.1673-5439.2013.02.015
    [12] GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi:  10.1109/TIP.2013.2281420
    [13] EfrosA A, Leung T K. Texture synthesis by non-parametric sampling[C]//Proceedings of the seventh IEEE international conference on computer vision, 1999: 1033-1038.
    [14] 马铭阳, 王德江, 孙翯, 等. 基于稳健主成分分析和多点恒虚警的红外弱小目标检测[J]. 光学学报, 2019, 39(8): 0810001-1-0810001-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm

    MA M Y, WANG D J, SUN H, et al. Infrared Dim-Small Target Detection Based on Robust Principal Component Analysis and Multi-Point Constant False Alarm[J]. Acta Optica Sinica, 2019, 39(8): 0810001-1-0810001-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908013.htm
    [15] 樊俊良, 高永明, 吴止锾, 等. 基于RPCA的单帧红外小目标检测算法[J]. 兵器装备工程学报, 2018, 39(11): 147-151. doi:  10.11809/bqzbgcxb2018.11.032

    FAN J L, GAO Y M, WU Z H, et al. Detection Algorithm of Single Frame Infrared Small Target Based on RPCA[J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 147-151. doi:  10.11809/bqzbgcxb2018.11.032
    [16] Wright J, Peng Y G, Ma Y, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[J]. Advances in Neural Information Processing Systems, 2009, 87(4): 3-56.
    [17] Danelljan M, Khan FS, Felsberg M, et al, Adaptive color attributes for real-time visual tracking[C]//CVPR, 2014: 1090-1097.
    [18] 史加荣, 郑秀云, 魏宗田, 等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605. doi:  10.3969/j.issn.1001-3695.2013.06.001

    SHI J R, ZHENG X Y, WEI Z T, et al. Survey on Algorithms of Low-rank Matrix Recovery[J]. Application Research of Computers, 2013, 30(6): 1601-1605. doi:  10.3969/j.issn.1001-3695.2013.06.001
    [19] 杜秀丽, 胡兴, 陈波, 等. 基于加权非局部相似性的视频压缩感知多假设重构算法[J]. 计算机科学, 2019, 46(1): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901046.htm

    DU X L, HU X, CHEN B, et al. Multi-hypothesis Reconstruction Algorithm of DCVS Based on Weighted Non-local Similarity[J]. Computer Science, 2019, 46(1): 291-296. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201901046.htm
    [20] 陈湘凭, 王志成, 田金文. 基于局部梯度和局部熵的红外小目标融合检测[J]. 计算机与数字工程, 2006, 34(10): 1-4. doi:  10.3969/j.issn.1672-9722.2006.10.001

    CHEN X P, WANG Z C, TIAN J W. Fusion Detection of Small Infrared Target Based on Local Entropy and Local Gradient Strength[J]. Computer & Digital Engineering, 2006, 34(10): 1-4. doi:  10.3969/j.issn.1672-9722.2006.10.001
    [21] 毛羽忻, 杨俊强, 曲劲松, 等. 基于局部熵的点目标检测算法分析[J]. 火炮发射与控制学报, 2014, 35(3): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201403009.htm

    MAO Y X, YANG J Q, QU J S, et al. Analysis for Dot Target Detection Based on Local Entropy Algorithm[J]. Journal of Gun Launch & Control, 2014, 35(3): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201403009.htm
    [22] ZHANG Y X, LI L, XIN Y H. Infrared Small Target Detection Based on Adaptive Double-layer TDLMS Filter[J]. Acta Photonica Sinica, 2019, 48(9): 091001. http://en.cnki.com.cn/Article_en/CJFDTotal-GZXB201909023.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  92
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 修回日期:  2020-11-06
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回