起重机械金属结构缺陷的热成像技术研究

Thermal Imaging Technology for Metal Structure Defects of Lifting Machinery

  • 摘要: 对起重机械金属结构裂纹缺陷的识别是红外热成像检测技术的新方向。介绍了脉冲红外热成像技术检测原理,设计了脉冲红外热成像检测系统,并根据脉冲红外热成像检测系统搭建了脉冲红外热成像检测系统实验平台。采用中值滤波和巴特沃斯低通滤波对实验中采集到的红外图像进行图像处理,并针对以上算法处理后缺陷轮廓边缘模糊的问题,提出了巴特沃斯带通滤波算法。对图像进行阈值分割、边缘检测后提取出缺陷轮廓特征,根据平板试件的实际尺寸和轮廓特征图像像素之间的换算关系,最终得到裂纹缺陷的识别精度。经过对比验证,脉冲红外热成像技术可以满足对起重机械金属结构裂纹缺陷检测的检测需求。

     

    Abstract: The identification of cracks in the metal structure of lifting machinery is a new direction for infrared thermal imaging detection technology. In this study, the detection principle of pulsed infrared thermal imaging was introduced, and a pulsed infrared thermal imaging detection system was designed; the experimental platform was constructed on the basis of these. Median filtering and Butterworth low-pass filtering were used to process the images collected in the experiment. To address the problem of blurring at the edges of the defects after processing the above algorithms, a Butterworth band-pass filtering algorithm was proposed. After threshold segmentation and edge detection, the defect contour feature was extracted, and using the conversion relationship between the actual size of the flat specimen and the contour feature image pixels, the recognition accuracy of the crack defect was finally obtained. The comparison and verification demonstrated that the pulsed infrared thermal imaging technology can meet the requirements of crack defect detection in crane metal structures.

     

/

返回文章
返回