Abstract:
To meet the requirements of high accuracy and strong anti-noise performance of image edge positioning for infrared and visible image registration and precision measurement, a sub-pixel image edge detection algorithm based on the cubic B-spline wavelet transform and Franklin moment is proposed. First, the image edge was decomposed using a cubic B-spline wavelet window function. Under the premise of setting the threshold, according to the principle of wavelet modulus maxima, the initial edge information is detected for each layer, and then the edge points are compared with the points in the 3 × 3 neighborhood in the multi-scale range. Points with similar moduli and amplitudes were reserved to establish a new edge image. Subsequently, a subpixel edge model is established. According to the principle of Franklin moment rotation invariance, the relationship between Franklin moments at all levels after the image edge is rotated to a certain angle is analyzed and the key parameters of the template for calculating the sub-pixel edge points are obtained. The template is moved on the new edge image obtained by wavelet transform and convoluted with the sub-image covered by it, and then the sub-image of the image is obtained from the edge points of the prime level. The experimental results show that, compared with the three algorithms with the current best performance, the algorithm based on the combination of the cubic B-spline wavelet transform and Franklin moments proposed in this paper has higher accuracy and stronger noise resistance. It can better meet the requirements for stable, reliable, and high-precision measurements of infrared and visible image registration.