Abstract:
The mechanical environment reliability of infrared thermal imagers is one of the most important indices in its structural design. To ensure that the infrared thermal imager can withstand the vibration environment during operation, a fault closed loop of an infrared thermal imager is used as an example to develop research on the fault mechanism and structure improvement design. The finite-element model of the infrared thermal imager is modified based on the dynamic test. The fault mechanism is deduced by combining the finite-element method and the fatigue failure theory under random vibration. According to the analysis results, the structure was improved and verified using the fatigue failure theory and random vibration test. The results indicate that the fault location is accurate and the structural improvement is effective. The analysis method proposed in this paper is expected to provide a reference for the fault location and structural improvement of a single sensor.