基于YOLO v7的轻量级红外目标检测算法

Lightweight Infrared Target Detection Algorithm Based on YOLO v7

  • 摘要: 针对红外图像信噪比低、分辨率不佳、噪声与杂波多等检测难点。提出一种基于YOLOv7的轻量化红外图像目标检测算法ITD-YOLO。首先,ITD-YOLO算法重设计网络结构,对特征提取网络与特征融合网络架构重新调整。裁剪掉原网络中深层对应的大感受野,依据重构后网络特征图输出,对模型预设锚框进行调节。改变多尺度特征融合中的深层特征与浅层特征的关系,提高浅层网络提取的细节信息在融合中所占的权重,提高对较小目标的检测性能;然后,在ELAN模块中引入PConv替换掉常规卷积,进一步降低模型计算量。其次,将模型损失函数调整为PolyLoss以加速模型收敛,进一步加强对目标的检测性能;最后,使用SIoU作为边框损失函数,增强对目标的定位精度。实验结果表明,ITB-YOLO能够有效改善检测效果,在FLIR与OSU数据集上,相较于YOLOv7s的平均精度均值分别提高2.27%与7.29%。改进后得到的模型体积仅为17.7 MB,计算量下降37.11%。与主流算法进行对比,ITD-YOLO在各项指标均得到了一定程度的提高,能够满足红外目标实时检测任务。

     

    Abstract: Aiming at the detection difficulties of infrared images such as low signal-to-noise ratio, poor resolution, and much noise and clutter. We propose a lightweight infrared image target detection algorithm ITD-YOLO based on YOLOv7. Firstly, the ITD-YOLO algorithm redesigns the network structure, and re-adjusts the architecture of the feature extraction network and the feature fusion network. Crop out the large receptive fields corresponding to the deep layers in the original network, and adjust the model preset anchor frames based on the output of the reconstructed network feature map. The relationship between deep and shallow features in multi-scale feature fusion is changed to increase the weight of the detail information extracted by the shallow network in the fusion to improve the detection performance of smaller targets; then, PConv is introduced into the ELAN module to replace the conventional convolution to further reduce the model computation. Next, the model loss function is adjusted to PolyLoss to accelerate the model convergence and further enhance the detection performance for targets; finally, SIoU is used as the edge loss function to enhance the localisation accuracy for targets. The experimental results show that ITB-YOLO can effectively improve the detection effect, and the mean average accuracy is increased by 2.27% and 7.29% compared with YOLOv7s on FLIR and OSU datasets, respectively. The volume of the model obtained after the improvement is only 17.7 MB, and the computation volume decreases by 37.11%. Comparing with the mainstream algorithms, ITD-YOLO has been improved to a certain extent in all the indexes, and can meet the real-time infrared target detection task.

     

/

返回文章
返回