化学水浴法合成硫化铅探测器的红外响应研究

杨冬, 申钧, 高恺聪, 冷重钱, 聂长斌, 张之胜

杨冬, 申钧, 高恺聪, 冷重钱, 聂长斌, 张之胜. 化学水浴法合成硫化铅探测器的红外响应研究[J]. 红外技术, 2023, 45(6): 559-566.
引用本文: 杨冬, 申钧, 高恺聪, 冷重钱, 聂长斌, 张之胜. 化学水浴法合成硫化铅探测器的红外响应研究[J]. 红外技术, 2023, 45(6): 559-566.
YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
Citation: YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.

化学水浴法合成硫化铅探测器的红外响应研究

基金项目: 

北京市工程技术研究中心基金项目 BG0231

重庆市自然科学基金面上项目 cstc2021jcyj-msxmX0389

详细信息
    作者简介:

    杨冬(1996-),男,硕士研究生,主要研究方向为碳基光电探测器。E-mail: yangdong20@mails.ucas.ac.cn

    通讯作者:

    张之胜(1978-),男,工程师,主要研究方向为碳基电子和光电器件。E-mail: zhangzhisheng@cigit.ac.cn

  • 中图分类号: TN362

Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition

  • 摘要: 硫化铅探测器具有短波红外高灵敏度、低俄歇噪声等优点,其中化学水浴法合成的硫化铅薄膜可与CMOS半导体工艺兼容,有利于实现低成本高性能的面阵探测器。然而,目前对化学水浴法合成硫化铅探测器的研究主要集中在较大尺寸的单元探测器。本文基于化学水浴法合成硫化铅薄膜,利用离子束刻蚀工艺,制备了10~200 μm尺寸的硫化铅光电探测器,研究了器件光电性能随电阻、长宽比、线宽等参数的变化。结果表明,随着尺寸的减小,硫化铅光电探测器的响应度逐渐增加,在1550 nm短波红外光的照射下,10 μm级器件的响应度达到了51.68 A/W,约为200 μm级器件的123倍,且在可见光和2.7 μm红外波长下也具有良好的宽波段光电响应。本文研究的微米尺寸探测器件可为硫化铅探测器研究提供一定的支撑。
    Abstract: A lead sulfide detector has the advantages of high short-wave infrared sensitivity and low auger noise. The lead sulfide film synthesized by chemical bath deposition can be compatible with the CMOS semiconductor process, which is beneficial for identifying low-cost and high-performance surface array detectors. However, the current research on lead sulfide detectors synthesized by chemical bath deposition primarily focuses on the larger unit detectors. In this study, the synthesis of lead sulfide film was based on chemical bath deposition. Lead sulfide photodetectors of 10–200 μm size were prepared using an ion beam etching process and the photoelectric performance of the device was studied in terms of resistance, aspect ratio, line width, and other parameters. The results showed that the responsivity of the PbS photodetector increased gradually as the size decreased. Under the irradiation of 1550 nm short-wave infrared light, the responsivity of the 10 µm photodetector was 51.68 A/W, which was approximately 123 times the responsivity of the 200 μm photodetector. Moreover, the PbS photodetector also had a good wide-range photoelectric response at visible light and 2.7 μm infrared wavelengths. The micron-size detector of this study can provide support for the research of lead sulfide detectors.
  • 图  1   PbS光电探测器三维结构示意图与工作原理图及制备过程

    Figure  1.   Three-dimensional structure, working principle and preparation process of PbS photodetector

    图  2   PbS光电探测器的微观形貌图

    Figure  2.   Microstructure images of PbS photodetector

    图  3   不同尺寸的器件的光电流和响应度与波长之间的关系

    Figure  3.   Photocurrent and responsivity of photodetectors with different sizes versus wavelength

    图  4   1550 nm光源下的光电流响应曲线

    Figure  4.   Photocurrent response curves under 1550 nm light source

    图  5   探测器件电阻与尺寸的关系

    Figure  5.   Resistance versus size of detectors

    图  6   响应度和光电流与电阻的关系

    Figure  6.   Responsivity and photocurrent versus resistance

    图  7   不同尺寸探测器在1550 nm入射光下的光电性能与光功率的关系

    Figure  7.   Photoelectric properties of photodetectors with different sizes versus light power under incident light at 1550 nm

    图  8   不同尺寸探测器在2.7 μm入射光下的光电性能与光功率的关系

    Figure  8.   Photoelectric properties of photodetectors with different sizes versus light power under incident light at 2.7 μm

    图  9   探测器的光电性能与尺寸之间的关系

    Figure  9.   Photoelectric properties of photodetectors versus sizes

    表  1   CBD法制备PbS所需原料

    Table  1   The raw materials required for PbS prepared by CBD method

    Name of raw material Chemical formula Use of raw material
    Lead acetate Pb(CH3COO)2 The reactant, which provides the lead source
    Sodium hydroxide NaOH The reactants, which provides an alkaline environment
    Thiourea SC(NH2)2 The reactants, which provides the sulfur source
    Sodium citrate Na3C6H5O7 The complexing agent, which controls reaction rate
    下载: 导出CSV
  • [1] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J], 物理学报, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm

    HU W D, LI Q, CHEN X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm

    [2]

    SHI L L, LIANG Q B, WANG W Y, et al. Research progress in organic photomultiplication photodetectors[J]. Nanomaterials (Basel), 2018, 8(9): 713. DOI: 10.3390/nano8090713

    [3] 李国伟. PbS红外探测器的制备和性能研究[D]. 成都: 电子科技大学, 2011.

    LI G W. Study on Preparation and Performance of PbS Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2011.

    [4] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    DING R J, YANG J R, HE L, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    [5] 李雪, 邵秀梅, 李淘, 等. 短波红外InGaAs焦平面探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm

    LI X, SHAO X M, LI T, et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm

    [6] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU L J, HAN F Z, BAI P J, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    [7]

    DIEZHANDINO J, VERGARA G, PEREZ G, et al. Monolithic integration of spectrally selective uncooled lead selenide detectors for low cost applications[J]. Applied Physics Letters, 2003, 83(14): 2751-2753. DOI: 10.1063/1.1615314

    [8]

    VERGARA G, LINARES HERRERO R, GUTíERREZ ÁLVAREZ R, et al. 80×80 VPD PbSe: the first uncooled MWIR FPA monolithically integrated with a Si-CMOS ROIC[C]//Pro. of SPIE, 2013, 8704: 87041M.

    [9]

    WENG B B, QIU J J, ZHAO L H, et al. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity[C]// Pro. of SPIE, 2013, 8993: 899311.

    [10]

    KONSTANTATOS G, CLIFFORD J, LEVINA L, et al. Sensitive solution-processed visible-wavelength photodetectors[J]. Nature Photonics, 2007, 1(9): 531-534. DOI: 10.1038/nphoton.2007.147

    [11]

    MI L F, CHANG Y J, ZHANG Y, et al. Hybrid perovskite exchange of PbS quantum dots for fast and high-detectivity visible-near-infrared photo-detectors[J]. Journal of Materials Chemistry C, 2020, 8(23): 7812-7819. DOI: 10.1039/D0TC01373K

    [12]

    YAN S Y, YANG Q, FENG S L, et al. Effect of air atmosphere sensitization on formation of PbSe p-n junctions for high-performance photodetectors[J]. Journal of Electronic Materials, 2020, 49(8): 4929-4935. DOI: 10.1007/s11664-020-08215-6

    [13]

    DONG R, BI C, DONG Q F, et al. An Ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554. DOI: 10.1002/adom.201400023

    [14]

    KUFER D, LASANTA T, BERNECHEA M, et al. Interface engineering in hybrid quantum dot-2D phototransistors[J]. Acs Photonics, 2016, 3(7): 1324-1330.

    [15]

    SONG X X, ZHANG Y T, ZHANG H T, et al. Graphene and PbS quantum dot hybrid vertical phototransistor[J]. Nanotechnology, 2017, 28(14): 145201.

    [16]

    KONSTANTATOS G. SARGENT E H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain[J]. Applied Physics Letters, 2007, 91(17): 173505.

    [17]

    LAUER R B. WILLIAMS F. Photoelectronic properties of graded composition crystals of Ii-Vi semiconductors[J]. Journal of Applied Physics, 1971, 42(7): 2904-2910.

    [18]

    BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718.

    [19]

    KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.

    [20]

    KONSTANTATOS G. SARGENT E H. Solution-processed quantum dot photodetectors[C]//Proceedings of IEEE, 2009, 97(10): 1666-1683.

  • 期刊类型引用(6)

    1. 田浩,胡海飞,蔡盛,王久龙,徐伟. 低轨星座红外探测器对临近空间高超声速目标的可探测性分析. 红外技术. 2024(06): 617-624 . 本站查看
    2. 田浩,蔡盛,徐伟,曹智睿. 乘波体高超声速导弹的天基红外可探测性分析. 空天预警研究学报. 2023(05): 335-338+343 . 百度学术
    3. 石安华,李海燕,石卫波,梁世昌. 临近空间高超声速巡航飞行器红外特征. 兵工学报. 2022(04): 796-803 . 百度学术
    4. 杨全顺,方明,李埌全,粟斯尧,杨彦广. 极高超声速稀薄气体原子辐射效应的p-DSMC方法. 力学学报. 2022(07): 1943-1951 . 百度学术
    5. 邢清华,高嘉乐. 反临作战天海地一体化传感器资源调度的挑战与思考. 航空兵器. 2020(01): 1-8 . 百度学术
    6. 何苹,王莹莹,樊雷. 临近空间高超声速飞行器红外辐射特性分析. 红外技术. 2019(12): 1175-1180 . 本站查看

    其他类型引用(1)

图(9)  /  表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  56
  • PDF下载量:  65
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-06
  • 刊出日期:  2023-06-19

目录

    /

    返回文章
    返回
    x 关闭 永久关闭

    尊敬的专家、作者、读者:

    端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

    预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

    感谢您对本刊的支持!

    《红外技术》编辑部

    2024年6月6日