Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition
-
摘要: 硫化铅探测器具有短波红外高灵敏度、低俄歇噪声等优点,其中化学水浴法合成的硫化铅薄膜可与CMOS半导体工艺兼容,有利于实现低成本高性能的面阵探测器。然而,目前对化学水浴法合成硫化铅探测器的研究主要集中在较大尺寸的单元探测器。本文基于化学水浴法合成硫化铅薄膜,利用离子束刻蚀工艺,制备了10~200 μm尺寸的硫化铅光电探测器,研究了器件光电性能随电阻、长宽比、线宽等参数的变化。结果表明,随着尺寸的减小,硫化铅光电探测器的响应度逐渐增加,在1550 nm短波红外光的照射下,10 μm级器件的响应度达到了51.68 A/W,约为200 μm级器件的123倍,且在可见光和2.7 μm红外波长下也具有良好的宽波段光电响应。本文研究的微米尺寸探测器件可为硫化铅探测器研究提供一定的支撑。Abstract: A lead sulfide detector has the advantages of high short-wave infrared sensitivity and low auger noise. The lead sulfide film synthesized by chemical bath deposition can be compatible with the CMOS semiconductor process, which is beneficial for identifying low-cost and high-performance surface array detectors. However, the current research on lead sulfide detectors synthesized by chemical bath deposition primarily focuses on the larger unit detectors. In this study, the synthesis of lead sulfide film was based on chemical bath deposition. Lead sulfide photodetectors of 10–200 μm size were prepared using an ion beam etching process and the photoelectric performance of the device was studied in terms of resistance, aspect ratio, line width, and other parameters. The results showed that the responsivity of the PbS photodetector increased gradually as the size decreased. Under the irradiation of 1550 nm short-wave infrared light, the responsivity of the 10 µm photodetector was 51.68 A/W, which was approximately 123 times the responsivity of the 200 μm photodetector. Moreover, the PbS photodetector also had a good wide-range photoelectric response at visible light and 2.7 μm infrared wavelengths. The micron-size detector of this study can provide support for the research of lead sulfide detectors.
-
Keywords:
- chemical bath deposition /
- lead sulfide /
- photodetector /
- infrared detector
-
-
表 1 CBD法制备PbS所需原料
Table 1 The raw materials required for PbS prepared by CBD method
Name of raw material Chemical formula Use of raw material Lead acetate Pb(CH3COO)2 The reactant, which provides the lead source Sodium hydroxide NaOH The reactants, which provides an alkaline environment Thiourea SC(NH2)2 The reactants, which provides the sulfur source Sodium citrate Na3C6H5O7 The complexing agent, which controls reaction rate -
[1] 胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J], 物理学报, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm HU W D, LI Q, CHEN X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm
[2] SHI L L, LIANG Q B, WANG W Y, et al. Research progress in organic photomultiplication photodetectors[J]. Nanomaterials (Basel), 2018, 8(9): 713. DOI: 10.3390/nano8090713
[3] 李国伟. PbS红外探测器的制备和性能研究[D]. 成都: 电子科技大学, 2011. LI G W. Study on Preparation and Performance of PbS Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
[4] 丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm DING R J, YANG J R, HE L, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm
[5] 李雪, 邵秀梅, 李淘, 等. 短波红外InGaAs焦平面探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm LI X, SHAO X M, LI T, et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm
[6] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002 ZHOU L J, HAN F Z, BAI P J, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
[7] DIEZHANDINO J, VERGARA G, PEREZ G, et al. Monolithic integration of spectrally selective uncooled lead selenide detectors for low cost applications[J]. Applied Physics Letters, 2003, 83(14): 2751-2753. DOI: 10.1063/1.1615314
[8] VERGARA G, LINARES HERRERO R, GUTíERREZ ÁLVAREZ R, et al. 80×80 VPD PbSe: the first uncooled MWIR FPA monolithically integrated with a Si-CMOS ROIC[C]//Pro. of SPIE, 2013, 8704: 87041M.
[9] WENG B B, QIU J J, ZHAO L H, et al. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity[C]// Pro. of SPIE, 2013, 8993: 899311.
[10] KONSTANTATOS G, CLIFFORD J, LEVINA L, et al. Sensitive solution-processed visible-wavelength photodetectors[J]. Nature Photonics, 2007, 1(9): 531-534. DOI: 10.1038/nphoton.2007.147
[11] MI L F, CHANG Y J, ZHANG Y, et al. Hybrid perovskite exchange of PbS quantum dots for fast and high-detectivity visible-near-infrared photo-detectors[J]. Journal of Materials Chemistry C, 2020, 8(23): 7812-7819. DOI: 10.1039/D0TC01373K
[12] YAN S Y, YANG Q, FENG S L, et al. Effect of air atmosphere sensitization on formation of PbSe p-n junctions for high-performance photodetectors[J]. Journal of Electronic Materials, 2020, 49(8): 4929-4935. DOI: 10.1007/s11664-020-08215-6
[13] DONG R, BI C, DONG Q F, et al. An Ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554. DOI: 10.1002/adom.201400023
[14] KUFER D, LASANTA T, BERNECHEA M, et al. Interface engineering in hybrid quantum dot-2D phototransistors[J]. Acs Photonics, 2016, 3(7): 1324-1330.
[15] SONG X X, ZHANG Y T, ZHANG H T, et al. Graphene and PbS quantum dot hybrid vertical phototransistor[J]. Nanotechnology, 2017, 28(14): 145201.
[16] KONSTANTATOS G. SARGENT E H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain[J]. Applied Physics Letters, 2007, 91(17): 173505.
[17] LAUER R B. WILLIAMS F. Photoelectronic properties of graded composition crystals of Ii-Vi semiconductors[J]. Journal of Applied Physics, 1971, 42(7): 2904-2910.
[18] BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718.
[19] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.
[20] KONSTANTATOS G. SARGENT E H. Solution-processed quantum dot photodetectors[C]//Proceedings of IEEE, 2009, 97(10): 1666-1683.
-
期刊类型引用(6)
1. 田浩,胡海飞,蔡盛,王久龙,徐伟. 低轨星座红外探测器对临近空间高超声速目标的可探测性分析. 红外技术. 2024(06): 617-624 . 本站查看
2. 田浩,蔡盛,徐伟,曹智睿. 乘波体高超声速导弹的天基红外可探测性分析. 空天预警研究学报. 2023(05): 335-338+343 . 百度学术
3. 石安华,李海燕,石卫波,梁世昌. 临近空间高超声速巡航飞行器红外特征. 兵工学报. 2022(04): 796-803 . 百度学术
4. 杨全顺,方明,李埌全,粟斯尧,杨彦广. 极高超声速稀薄气体原子辐射效应的p-DSMC方法. 力学学报. 2022(07): 1943-1951 . 百度学术
5. 邢清华,高嘉乐. 反临作战天海地一体化传感器资源调度的挑战与思考. 航空兵器. 2020(01): 1-8 . 百度学术
6. 何苹,王莹莹,樊雷. 临近空间高超声速飞行器红外辐射特性分析. 红外技术. 2019(12): 1175-1180 . 本站查看
其他类型引用(1)