Infrared Armored Target Detection Based on Edge-perception in Deep Neural Network
-
摘要: 装甲目标自动检测一直是红外制导领域的研究热点与难点。解决该问题的传统方法是提取目标的低层次特征,并对特征分类器进行训练。然而,由于传统的检测算法不能覆盖所有的目标模式,在实际应用中的检测性能受到限制。本文受边缘感知模型的启发,提出了一种基于边缘感知的改进深度网络,该网络是通过边缘感知融合模块提升装甲轮廓精度,利用特征提取模块和上下文聚合模块的优势,能够更好地适应目标的形态变化,具有较高的检测与识别的精度。验证结果表明,本文提出的装甲检测网络模型可以有效地提高红外图像中装甲的检测与定位精度。Abstract: Automatic detection of armored targets has always been the most challenging problem in the field of infrared guidance. Traditional models address this problem by extracting the low-level features of an object and then training the feature classifier. However, because traditional detection algorithms can not cover all object patterns, the detection performance in practical applications is limited. Inspired by the edge-aware model, this study proposes an improved deep network based on edge perception. The network improves the accuracy of the armored contour through an edge-aware fusion module. By exploiting he advantages of the feature extraction module and context aggregation module, it can better adapt to the shape changes of objects and has high detection and recognition accuracy. The results show that the proposed armored detection network model can effectively improve the accuracy of detection and positioning in infrared images.
-
Keywords:
- armored vehicle /
- infrared image /
- target detection /
- edge perception /
- homing missile /
- pyramid pooling
-
-
表 1 装甲检测结果统计
Table 1 Statistics of detection results
Classification Result Positive TP(True Positive) FP(False Positive) Negative FN(False Negative) TN(True Negative) 表 2 不同测试子集的特点
Table 2 Characteristics of different test subsets
Subset Characteristic A The target is fuzzy, the contrast is low, and some turrets are covered. B The armored target is small, and there are many bright areas in the background. C The armor area is large and full of the whole infrared image. D The armor boundary is not obvious and the background is super saturation. E The noise is very large and the internal details of the target are uneven. F The armored target is fuzzy and partially occlused, and some caterpillar bands are coved by weeds. 表 3 不同测试数据集下检测精度
Table 3 Detection Rates under Different Testing Data Sets
Datasets Models SDD DenseNet ResNet ConvNet YOLO-v2 Proposed A 73.32% 84.34% 86.61% 85.90% 89.15% 90.06% B 62.41% 65.43% 72.15% 77.00% 77.59% 77.14% C 69.12% 73.22% 74.35% 72.24% 77.09% 78.07% D 78.28% 87.08% 89.40% 86.01% 88.36% 89.44% E 51.91% 52.90% 59.75% 59.11% 58.69% 59.58% F 48.65% 51.55% 60.11% 52.17% 60.20 60.21% -
[1] 陈国胜, 胡福东, 周成宝, 等. 基于BIRD网络的智能红外全景识别系统[J]. 红外技术, 2018, 40(8): 765-770. http://hwjs.nvir.cn/article/id/hwjs201808008 CHEN Guosheng, HU Fudong, ZHOU Chenbao, et al. Intelligent infrared panoramic recognition system based on BIRD network[J]. Infrared Technology, 2018, 40(8): 765-770. http://hwjs.nvir.cn/article/id/hwjs201808008
[2] 刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1): 88-92. DOI: 10.3969/j.issn.1671-6647.2018.01.008 LIU B, DAI Y, JIN J, et al. Long-range object detection on sea surface based on spatial distribution and statistical characteristics[J]. Marine Science, 2018, 42 (1): 88-92 DOI: 10.3969/j.issn.1671-6647.2018.01.008
[3] 骆清国, 赵耀, 俞长贺, 等. 某型装甲车辆红外辐射信号的建模与仿真[J]. 装甲兵工程学院学报, 2019, 33(1): 31-36. DOI: 10.3969/j.issn.1672-1497.2019.01.006 LUO Q, ZHAO Y, YUC, et al. Modeling and simulation of infrared radiation signal of an armored vehicle[J]. Journal of Armored Force Engineering College, 2019, 33(1): 31-36. DOI: 10.3969/j.issn.1672-1497.2019.01.006
[4] DONG X, HUANG X, ZHENG Y, et al. A novel infrared small moving target detection method based on tracking interest points under complicated background[J]. Infrared Phys. Technol., 2014, 65: 36-42. DOI: 10.1016/j.infrared.2014.03.007
[5] HE Y, LI M, ZHANG J, et al. Small infrared target detection based on low-rank and sparse representation[J]. Infrared Phys. Technol. , 2015, 68: 98-109. DOI: 10.1016/j.infrared.2014.10.022
[6] GUO J, Hsia C, LIU Y, et al. Fast background subtraction based on a multilayer codebook model for moving object detection[C]//IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1809-1821.
[7] 彭博, 臧笛. 基于深度学习的红外车辆识识别方法研究[J]. 计算机科学, 2015, 42(4): 268-273. PENG Bo, ZANG Di. Vehicle logo recognition based on deep learning[J]. Computer Science, 2015, 42(4): 268-273.
[8] XIA K J, CHENG J, TAO D, et al. Liver detection algorithm based on an improved deep network combined with edge perception[J]. IEEE ACCESS, 2019, 12: 175135-17514. http://ieeexplore.ieee.org/document/8901142
[9] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[10] YU Z, FENG C, LIU M Y, et al. CASENet: Deep category-aware semantic edge detection[C]// Computer Vision & Pattern Recognition of IEEE, 2017: 1761-1770(doi: 10.1109/CVPR.2017.191).
[11] Neubeck A, Gool L V. Efficient non-maximum suppression[C]// International Conference on Pattern Recognition, IEEE Computer Society, 2006: 850-855.
[12] 焦安波, 何淼, 罗海波. 一种改进的HED网络及其在边缘检测中的应用[J]. 红外技术, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011 JIAO Anbo, HE Miao, LUO Haibo. Research on significant edge detection of infrared image based on deep learning[J]. Infrared Technology, 2019, 41(1): 72-77. http://hwjs.nvir.cn/article/id/hwjs201901011
[13] 杨眷玉. 基于卷积神经网络的物体识别研究与实现[D]. 西安: 西安电子科技大学, 2016. YANG J. Research and Implementation of Object Detection Based on Convolutional Neural Networks[D]. Xi'an: Xidian University, 2016.
[14] 丁文秀, 孙悦, 闫晓星. 基于分层深度学习的鲁棒行人分类[J]. 光电工程, 2015, 42(9): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201509005.htm DING W, SUN Y, YAN Xiaoxing. Robust pedestrian classification based on hierarchical deep learning[J]. Opto-Electronic Engineering, 2015, 42(9): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201509005.htm
[15] CHEN S, CHEN Z, XU X, et al. Nv-Net: efficient infrared image segmentation with convolutional neural networks in the low illumination environment[J]. Infrared Physics & Technology, 2020, 105: 103184. http://www.sciencedirect.com/science/article/pii/S1350449519310357
[16] HOSANG J, BENENSON R, SCHIELE B. A convnet for non-maximum suppression[C]//German Conference on Pattern Recognition, Cham: Springer, 2016: 192-204.
[17] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE Press, 2017: 7263-7271.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[19] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[20] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
-
期刊类型引用(19)
1. 王琦,张欣唯,童悦,王昱晴,张锦,王咏涛,袁小翠. 一种复杂背景下电气设备红外图像精确分割方法. 激光与红外. 2025(03): 399-407 . 百度学术
2. 孙超,祁步仁,王义成,张国梁,李瑾辉. 基于物联网技术的电力设备异常温升状态监测方法. 微型电脑应用. 2025(02): 249-252+256 . 百度学术
3. 陈秋菊,彭天昊,康万杰,何国锋. 特征融合的电力机械设备过热故障红外检测. 机械设计与制造. 2024(04): 337-341 . 百度学术
4. 林颖,张峰达,李壮壮,郑文杰,戈宁. 基于大模型的红外图像电力设备交互式分割. 网络新媒体技术. 2024(02): 53-60+67 . 百度学术
5. 尤渺. 基于模糊Petri网和马尔科夫链理论的水电厂设备故障应急响应模型. 电子设计工程. 2024(10): 59-63 . 百度学术
6. 曹李伟. 基于红外热成像技术的变电设备热故障识别方法. 电工技术. 2024(09): 130-132 . 百度学术
7. 江钊. 基于深度神经网络的市政电气故障识别方法研究. 电气技术与经济. 2024(07): 48-50 . 百度学术
8. 张宇,袁小翠,许志浩,康兵. 复杂背景下断路器红外图形精确分割方法. 江西电力. 2024(03): 1-7 . 百度学术
9. 戚浩明. 风力发电厂输变电设备电连接发热故障主动预警研究. 电气时代. 2024(09): 35-39 . 百度学术
10. 李荪. 基于红外测温技术的变电设备温度异常检测研究. 电气技术与经济. 2024(10): 57-59 . 百度学术
11. 黄颖,彭铖,夏骏. 梯度扩散下的电气设备调试危险点自适应识别方法. 微型电脑应用. 2024(11): 182-185 . 百度学术
12. 张彦迪,陈江宁,老大中. 改进激光传感器的电气设备过热故障识别方法. 计算机仿真. 2023(11): 91-95 . 百度学术
13. 汤婕. 物联网环境下电气设备实时状态信息监测技术. 廊坊师范学院学报(自然科学版). 2023(04): 66-70 . 百度学术
14. 张婷婷,张冬霞,潘红娜. 基于无线网络的船舶电气设备过热监测系统. 舰船科学技术. 2023(24): 180-183 . 百度学术
15. 林颖,张峰达,李壮壮,孙艺玮,于文牮. 基于交互式分割的电力设备红外图像自动标注方法. 山东电力技术. 2023(12): 20-25+44 . 百度学术
16. 刘赫,赵天成,刘俊博,矫立新,许志浩,袁小翠. 基于深度残差UNet网络的电气设备红外图像分割方法. 红外技术. 2022(12): 1351-1357 . 本站查看
17. 梁玉真,张仕海,汝承印,朱冶诚. 海上平台电气温度监控系统及预测模型研究. 电子测量技术. 2022(22): 162-169 . 百度学术
18. 谢水斌. 智能化变电站电气设备的安装及调试. 光源与照明. 2022(10): 158-160 . 百度学术
19. 李烈熊. 基于ZigBee技术的机电设备故障智能监测系统设计. 信息与电脑(理论版). 2022(20): 140-142 . 百度学术
其他类型引用(1)