Abstract:
To address the problems of low measurement accuracy and limited use conditions of existing human body temperature measurement schemes, a non-contact human body temperature measurement accuracy compensation method based on infrared thermal imaging is studied. Considering the influence of temperature measurement devices and environments on the measurement accuracies, we need to solve the problems of infrared camera output values drifting with time, periodic signal chopping of an infrared camera, constant change in temperature measurement distance, and frequency domain noise of the temperature output value. To solve these problems, a comprehensive temperature measurement accuracy compensation method is proposed to effectively reduce the temperature measurement error. The experiment showed that the errors in human body temperature measurement under different distances were less than 0.2℃ using the precision compensation method in this study, which can realize accurate human body temperature measurement.