电子轰击型有源像素传感器(EBAPS)研究进展

王司龙, 孙爱平, 李训牛, 余佳桐, 周玲玲, 陈玉柔, 皮冬明

王司龙, 孙爱平, 李训牛, 余佳桐, 周玲玲, 陈玉柔, 皮冬明. 电子轰击型有源像素传感器(EBAPS)研究进展[J]. 红外技术, 2024, 46(10): 1120-1129.
引用本文: 王司龙, 孙爱平, 李训牛, 余佳桐, 周玲玲, 陈玉柔, 皮冬明. 电子轰击型有源像素传感器(EBAPS)研究进展[J]. 红外技术, 2024, 46(10): 1120-1129.
WANG Silong, SUN Aiping, LI Xunniu, YU Jiatong, ZHOU Lingling, CHEN Yurou, PI Dongming. Research Progress of an Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1120-1129.
Citation: WANG Silong, SUN Aiping, LI Xunniu, YU Jiatong, ZHOU Lingling, CHEN Yurou, PI Dongming. Research Progress of an Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1120-1129.

电子轰击型有源像素传感器(EBAPS)研究进展

详细信息
    作者简介:

    王司龙(2001-),男,吉林长春人,硕士研究生,研究方向为光学系统设计。E-mail: 16688202332@139.com

    通讯作者:

    孙爱平(1980-),男,硕士,正高级工程师,主要研究方向为红外整机系统设计以及光学系统设计。E-mail:50973525@qq.com

  • 中图分类号: TN223

Research Progress of an Electron Bombarded Active Pixel Sensor

  • 摘要:

    电子轰击型有源像素传感器(electron bombarded active pixel sensor, EBAPS)是一种电子轰击型的数字化微光器件,低功耗、高灵敏度、适用于极低照度探测。本文从EBAPS原理出发,以传感器阴极、阳极内部结构为着手点,阐述EBAPS从光信号输入到数字图像输出的工作过程,分析EBAPS光学系统的结构特点,结合Intevac公司系列EBAPS产品综述EBAPS的发展迭代与应用。最后,总结影响EBAPS传感器性能的各方面因素并展望器件的发展趋势。

    Abstract:

    An electron bombarded active pixel sensor(EBAPS) is a novel, digital low-light device characterized by its low power consumption, high sensitivity, and suitability for extreme low-light detection. This study begins with the principles of the EBAPS, focusing on the internal structure of the sensor's cathode and anode to elucidate the working process of the EBAPS from its input of optical signals to its output of digital images. This study further analyzes the structural features of the EBAPS optical system and, combined with a series of EBAPS products from the Intevac Corporation, reviews the development iterations and applications of the EBAPS. Finally, this study summarizes the various factors affecting the performance of EBAPS sensors and discusses the development trends of such devices.

  • 低照度成像技术是解决低光照(具体指0.1 lux以下)环境获取视频图像的技术。按照是否包含真空系统,低照度成像器件主要分为三类:第一类是利用外光电效应的真空光电子成像器件,比如基于多碱材料体系的超二代微光像增强器、基于GaAs材料体系的三代微光像增强器;第二类是利用内光电效应的固体成像器件,比如基于硅材料体系的电子倍增CCD(EMCCD)/CMOS(EMCMOS)和低照度CMOS成像器件、基于Ⅲ-Ⅴ族InP/InGaAs材料体系的短波红外InGaAs探测器等;第三类是结合真空和固体器件优势的混合型成像器件,如电子轰击CCD(EBCCD)、电子轰击有源像素CMOS器件的EBAPS。为促进我国低照度成像技术尤其是新一代昼夜通用高灵敏度图像传感器EBAPS的发展,2024年10期,《红外技术》推出了“低照度成像技术”专栏,共收录6篇学术论文,其中2篇文章以EBAPS为主题,1篇综述了EBAPS的研究进展,另1篇提出连通域检测算法筛选高亮噪点区域和异常像素点自适应中值替代的离散系数测试方法并研制了EBAPS闪烁噪声系统;与此形成对照的是1篇微光像增强器的闪烁噪声测试方法,结合了离散系数与Harris角点检测;1篇片上集成偏振单元的EMCCD器件,还有2篇聚焦于低照度图像处理方法。专栏旨在为我国相关科研人员和广大读者提供学术参考,为低照度成像技术的创新发展提供一些新思路和新手段。

    最后,感谢各位审稿专家和编辑的辛勤工作。

    ——王岭雪

  • 图  1   EBAPS传感器的工作原理图[2]

    Figure  1.   Working principle diagram of EBAPS sensor[2]

    图  2   CMOS的APS及PPS结构[4]

    Figure  2.   Structure of CMOS APS and PPS[4]

    图  3   APS芯片结构[3]

    Figure  3.   Structure diagram of APS chip[3]

    图  4   EBAPS响应曲线[6]

    Figure  4.   EBAPS response curves[6]

    图  5   光阴极原理图[10]

    Figure  5.   Photocathode principle[10]

    图  6   增强型CCD/CMOS

    Figure  6.   Intensified CCD/CMOS

    图  7   EBAPS成像系统组成

    Figure  7.   Composition diagram of EBAPS imaging system

    图  8   分波段定焦光学成像:可见光阴极焦面夜间模式(上);近红外阳极焦面白昼模式(下)

    Figure  8.   Optical imaging of segmented fixed focus: Visible light cathode focal plane with night mode(above)(b) Near-infrared anodic focal plane with day mode(below)

    图  9   宽波段调焦光学成像:宽波段阴极焦面夜间模式(上);宽波段阳极焦面白昼模式(下)

    Figure  9.   Wide-band focused optical imaging: (a) Wide-band cathode focal plane with night mode(above)(b) Wide-band anodic focal plane with day mode(below)

    图  10   EBAPS芯片的实物[18]

    Figure  10.   EBAPS chip[18]

    图  11   Night Vista(左)和ISIE6相机(右)的实物照片[18]

    Figure  11.   Photos of the Night Vista(left) and ISIE6(right) cameras[18]

    图  12   用于阿帕奇武装直升机的EBAPS相机及夜间(满月、无月)成像效果[19]

    Figure  12.   EBAPS camera used for Apache gunship and night (full moon, no moon) imaging effect[19]

    图  13   半月光状态下50码和75码外人物图像[20]

    Figure  13.   Images of people 50 and 75 yards away under half moonlight[20]

    图  14   Collins航空公司研制的头盔式数字夜视显示器EVA系统[21]

    Figure  14.   Head-mounted digital night vision display EVA system developed by Collins Aviation[21]

    图  15   激光雷达系统示意图[24]

    Figure  15.   Schematic diagram of LiDAR system[24]

    图  16   北方夜视股份9B-3EBAPS传感器光谱特性曲线

    Figure  16.   Northern Night Vision shares 9B-3EBAPS sensor spectral characteristic curve

    图  17   EBAPS的实验样机图[19]

    Figure  17.   Experimental prototype of EBAPS[19]

    图  18   彩色微光EBAPS图像采集系统[31]

    Figure  18.   Color low light level EBAPS image acquisition system[31]

    表  1   EBAPS系列产品性能参数对比[12-17]

    Table  1   Comparison of performance parameters of EBAPS series products[12-17]

    Function Product
    NightVista ISIE6 ISIE10 ISIE11 ISIE19
    Pixel 640×480 1280×1024 1280×1024 1640×1240 1920×1920
    Pixel size/µm 12×12 6.7×6.7 10.8×10.8 10.8×10.8 9.11×9.11
    Sensitive size/mm 9.8 11 17.7 22.2 24.7
    Frequency/fps 30 27.5 37 60 160
    下载: 导出CSV
  • [1] 白晋周. 电子轰击有源像素传感器关键技术及应用研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2022.

    BAI Jinzhou. Research on Key Technology and Application of Electron Bombardment Active Pixel Sensor[D]. Xi'an: University of Chinese Academy of Sciences (Xi'an Optical Precision Mechanical Research, CAS), 2022.

    [2] 田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    TIAN Jinsheng. Latest development of low light level image sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    [3]

    Aebi V W, James B J. Electron bombarded active pixel sensor: CA20002379956[P]. [2001-01-25].

    [4] 熊智鹏, 李琦, 王骐. 电子轰击型有源像素传感器在激光雷达的应用[J]. 激光与红外, 2012, 42(7): 725-730.

    XIONG Zhipeng, LI Qi, WANG Qi. Application of electron bombardment active pixel sensor in lidar[J]. Laser and Infrared, 2012, 42(7): 725-730.

    [5]

    BAI J, BAI Y, HOU X, et al. The analysis of electron scattering among multiplying layer in EBAPS using optimized Monte Carlo method[J]. Modern Physics Letters B, 2020(1): 2050398. DOI: 10.1142/S0217984920503984.

    [6]

    Intevac Inc. Apache M611-02 Low Light Level Camera[EB/OL]. [2019-02-23]. https://www.intevac.com/intevacphotonics/apache-camera/.

    [7]

    INSINNA VALERI. Special Operators To Test Digital Night Vision Goggles[J/OL]. National Defense, 2013, 98(72): https://law-journals-books.vlex.com/vid/special-operators-to-test-635938861

    [8] 蔡志鹏. 用于双微带阴极选通型分幅相机的改进型第三代像增强器研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.

    CAI Zhipeng. Research on Improved Third Generation Image Intensifier for Dual Microstrip Cathode Gate Amplitude Divider Camera[D]. Xi'an: Graduate School of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2013.

    [9] 吴昊, 伍园. 数字微光夜视器件技术研究[J]. 光电子技术, 2022, 42(1): 72-78.

    WU Hao, WU Yuan. Technology research of digital low light level night vision device[J]. Optoelectronic Technology, 2022, 42(1): 72-78.

    [10] 李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440.

    LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence[J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440

    [11] 常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.

    CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.

    [12]

    Chrzanowski K. Review of night vision technology[J]. Opto-electronics Review, 2013, 21(2): 153-181. DOI: 10.2478/s11772-013-0089-3.

    [13]

    Jeff Andreson. Intevac announces LIV AR digital camera pro-duction drders[EB/OL]. [2013-02-08]. https://www.intevac.com.

    [14]

    Norton T, Joseph C, Woodgate B E, et al. High quantum efficiency photon-counting imaging detector development for UV(50-320 nm) astronomical observations[C]// AAS Meeting, 2011, 43: 21725419N.

    [15]

    Intevac Inc. Apache M611-05 low light level camera[EB/OL]. [2021-03-04]. https://www.intevac.com/.

    [16] 金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程, 2015, 44(11): 3167-3176.

    JIN Weiqi, TAO Yu, SHI Feng, et al. Development of low-light video devices and their technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167-3176.

    [17]

    Intevac Inc. NightVista®VISNIR Cameras[EB/OL]. [2021-03-04]. https:/www.intevac.com/intevacphotonics/military.

    [18]

    Intevac Inc. Apache M506 low light level camera[EB/OL]. [2021-03-04]. https://www.intevac.com/intevacphotonics/dnvg/.

    [19] 刘亚宁. 基于低功耗小体积FPGA的EBAPS相机技术[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019.

    LIU Yaning. EBAPS camera technology based on low power and small size FPGA [D]. Beijing: University of the Chinese Academy of Sciences (National Center for Space Science, CAS), 2019.

    [20]

    Intevac Photonics. Advances in electronic bombardment of active pixel sensors: E3010M digital image intensifier(DI2)[EB/OL]. [2022-07-04]. http://wwwintevac.com/Intevacphotonics.

    [21]

    Collins Aviation Corp. Collins new airborne digital night vision system[EB/OL]. [2020-06-23]. https://www.collinsaerospace.com/what-we-do/industries/military-and-defense/displays-and-controls/si-mulation-and-training-helmet-mounted–displays.

    [22]

    Redman B C, Stann B L, Ruff W C, et al. Anti-ship missile tracking with a chirped amplitude modulation ladar[C]//Laser Systems Technology Ⅱ, 2004: 5-7(DOI: 10.1117/12.542598).

    [23]

    Grasso R J, Odhner J E, Wikman J C, et al. A novel low-cost targeting system (LCTS) based upon a high-resolution 2D imaging laser radar[C]//Proceedings of SPIE, 2005, 47: 190-194. DOI: 10.1117/12.630525.

    [24]

    Stann B, Redman B C, Lawler W, et al. Chirped amplitude modulation ladar for range and doppler measurements and 3-D imaging[C]//Proceedings of SPIE, 2007, 6550: 655005-655005-12. DOI: 10.1117/12.719523.

    [25]

    Photonis EBNocturn 2MPX[EB/OL][2012-04-23]. https://www.directindustry-china.cn/prod/photonis/product-82199-2210683.

    [26] 朴雪. 电子轰击有源像素传感器电荷收集效率理论模拟研究[D]. 长春: 长春理工大学, 2017.

    PU X. Theoretical Simulation of Charge Collection Efficiency of Active Pixel Sensor Under Electron Bombardment [D]. Changchun: Changchun University of Science and Technology, 2017.

    [27] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1098-1100.

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. A preliminary approach to the generation of low light level night vision devices[J]. Applied Optics, 2021, 42(6): 1098-1100.

    [28] 刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报, 2018, 67(1): 175-180.

    LIU Hulin, WANG Xing, TIAN Jinshou, et al. Experimental study on high resolution ultraviolet electron bombardment of complementary metal oxide semiconductor device [J]. Acta Physica Sinica, 2018, 67(1): 175-180.

    [29]

    YE Y, KUN H, LEI Y, et al. Study on effect of different temperatures on imaging performance of EBAPS devices[C]//Symposium on Novel Photoelectronic Detection Technology and Applications, 2020, DOI: 10.1117/12.2587110.

    [30] 李桐桐, 肖超, 焦岗成, 等. 电子敏感CMOS部件除气方法[J]. 应用光学, 2022, 43(6): 1181-1186.

    LI Tongtong, XIAO Chao, JIAO Gangcheng, et al. Degassing method for electron-sensitive CMOS components[J]. Applied Optics, 2022, 43(6): 1181-1186.

    [31] 刘璇, 李瑞强, 李力, 等. 基于三色LCTF的自然感彩色微光EBAPS成像系统[J]. 应用光学, 2022, 43(6): 1044-1053.

    LIU Xuan, LI Ruiqiang, LI Li, et al. Natural color low-light EBAPS imaging system based on three-color LCTF[J]. Applied Optics, 2022, 43(6): 1044-1053.

图(18)  /  表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  60
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-07-14
  • 刊出日期:  2024-10-19

目录

    /

    返回文章
    返回