非制冷型640×512面阵红外导引头光学系统设计

孙爱平, 龚杨云, 浦恩昌, 李泽民, 雷旭峰

孙爱平, 龚杨云, 浦恩昌, 李泽民, 雷旭峰. 非制冷型640×512面阵红外导引头光学系统设计[J]. 红外技术, 2021, 43(8): 736-742.
引用本文: 孙爱平, 龚杨云, 浦恩昌, 李泽民, 雷旭峰. 非制冷型640×512面阵红外导引头光学系统设计[J]. 红外技术, 2021, 43(8): 736-742.
SUN Aiping, GONG Yangyun, PU Enchang, LI Zemin, LEI Xufeng. Optical System Design of Uncooled 640×512 Infrared Seeker[J]. Infrared Technology , 2021, 43(8): 736-742.
Citation: SUN Aiping, GONG Yangyun, PU Enchang, LI Zemin, LEI Xufeng. Optical System Design of Uncooled 640×512 Infrared Seeker[J]. Infrared Technology , 2021, 43(8): 736-742.

非制冷型640×512面阵红外导引头光学系统设计

详细信息
    作者简介:

    孙爱平(1980-),男,硕士,高级工程师,研究方向:光学系统设计。E-mail:50973525@qq.com

  • 中图分类号: TN219

Optical System Design of Uncooled 640×512 Infrared Seeker

  • 摘要: 为了增大视场角、提高探测距离,本文设计了一款采用640×512面阵非制冷机芯的红外成像导引头。首先分析了红外成像导引头多种结构型式,结合本文设计要求的特点,选择了万向支架式的结构型式;其次对红外导引头光学系统进行像质优化,并对框架角及盲区的满足情况开展分析;最后以实物样机的试验情况,说明此红外成像导引头成像质量良好,能满足搜索、跟踪目标的要求。
    Abstract: In order to increase the angle of field and the detection distance, we designed an infrared imaging seeker using an 640×512 uncooled FPA. Firstly, we analyzed various structural types of infrared imaging seeker. Based on the characteristics of the design requirements, the universal support type structural type is selected. Secondly, we optimized the image quality of the infrared seeker optical system and analyzed the satisfaction of the frame angle and blind area. Finally, the test results of the real prototype show that the infrared imaging seeker has good imaging quality and can meet the requirements of searching and tracking targets.
  • 近年来,以美国AGM-183A为代表的空射式高超声速武器快速发展[1],利用飞机在低空(<30 km)发射,全程在50 km以下飞行,巡航速度达到5 Ma以上,可以有效躲避地面雷达早期探测[2],具备大范围机动变轨[3],突防能力极强。

    目前针对这类目标的早期预警大多采用低轨卫星红外探测器,其视野不受地球曲率限制,探测距离远,覆盖面积大,探测波段灵活,还可以组网接力探测,实现对高超声速目标的全程跟踪[4]。作为反制措施,高超声速飞行器红外抑制技术也日臻成熟[5-6],通过烧蚀、发汗、喷射冷却等手段,可以有效减少飞行器表面与周围空气剧烈压缩和摩擦带来的气动热,降低辐射的光谱信号强度,增大探测器发现和识别难度[7]

    目前公开报道的文献中,较少有针对已有的天基红外预警系统(例如美国的STSS)性能,分析其在不同探测条件下,对于采用红外抑制手段的高超声速目标的实际探测性能,从而给出有针对性的建议。而这正是未来临近空间国土防空反导的重要研究方向[8]

    以美国AGM-183A作为分析目标,其外形如图 1所示,其战斗部为乘波体构型,模型如图 2所示。

    图  1  AGM-183A外形
    Figure  1.  Outline of AGM-183A
    图  2  AGM-183A建模
    Figure  2.  Modeling of AGM-183A

    据文献[1]报道,AGM-183A在头体分离后巡航速度为5~6 Ma,巡航高度约30 km。用CFD软件对头部乘波体进行不同姿态下的气动热分析,其空气速度场和表面温度场如图 3图 4所示。

    图  3  CFD气动仿真结果
    Figure  3.  Aerodynamics simulation by CFD
    图  4  CFD温度场仿真结果
    Figure  4.  Temperature simulation by CFD

    图 4看出,攻角对目标表面温度分布影响不大,目标温度约为850~1450 K。利用网格面积进行加权平均计算,得到速度5 Ma、高度30 km、攻角0°、10°和20°条件下,目标等效辐射温度分别1170 K、1260 K和1280 K。

    图 5是半球形探测空间内飞行器与卫星探测平台之间的相对位置关系,其中底部平面O为目标飞行平面,其法线方向定义为Z轴,目标飞行方向定义为X轴,角度θZ轴与探测器光轴方向之间角度,定义为俯仰角,取值范围[0, π/2]。角度ψX轴与探测器光轴在目标飞行平面XOY投影之间的角度,定义为方位角,取值范围[0, π]。

    图  5  探测坐标系及探测角度定义
    Figure  5.  Definition of detection coordinate system

    根据图 4温度场数据,结合文献[1]给出的AGM -183A头部乘波体结构尺寸,计算目标本体的光谱辐射强度(见图 6),其峰值辐射强度集中在2~5 μm,因此以该波段作为LEO星座的红外探测波段。

    图  6  目标光谱辐射强度分布
    Figure  6.  Target spectral radiant intensity distribution

    取目标等效辐射温度1200 K,2~5 μm波段大气光谱透过率取平均值0.95[9],对目标光谱辐射强度在2~5 μm波段上积分,计算目标在图 5所示坐标系的红外辐射能量分布,结果如图 7所示。

    图  7  目标红外辐射能量分布(2~5 μm)
    Figure  7.  Target infrared radiation energy distribution

    从计算结果看,目标在不同探测方向上的红外辐射能量分布有较大差异,俯仰角θ越小,方位角ψ越接近90°(即星下点探测模式),辐射能量越大;俯仰角θ越大,方位角ψ越接近0°(即临边+迎头探测模式),辐射能量越小。目标2~5 μm在波段的整体辐射能量为3.2~4.3×104 W/sr。

    文献[10]给出低轨卫星红外探测器像元信噪比SNR的计算公式:

    $$ {\rm{SNR}} = \frac{{\Delta {V_{\rm{t}}}}}{{{V_{\rm{n}}}}} = \frac{{{D^*}}}{{{{\left( {{A_{\rm{d}}} \cdot \Delta f} \right)}^{1/2}}}}\frac{{{\tau _0} \cdot {\tau _{\rm{a}}}\left( \lambda \right) \cdot \left( {{\rm{ \mathsf{ π}}} \cdot \Delta I} \right) \cdot {A_{\rm{d}}}}}{{4 \cdot {F^2} \cdot {{\left( {1 + {M_{{\rm{optic}}}}} \right)}^2} \cdot {A_{{\rm{DAS}}}}}} $$ (1)

    式中:ΔI为目标与背景的红外辐射强度差(W⋅sr-1);ΔVt为目标在探测器像元位置产生的信号电压(V);Vn为低轨预警卫星探测器噪声电压峰值(V);F代表光学系统F数,Ff/Df代表光学系统焦距(m);D代表光学系统入瞳直径(m);Moptic为光学系统放大率,MopticR2/R1R1代表目标与低轨红外预警卫星成像系统的距离(m);R2代表光学系统入瞳中心到探测器焦平面像元位置的距离(m);ADAS为低轨红外预警卫星探测器的视觉立体角在物空间的投影,ADAS=AdR1/R2Ad为探测器像元面积(m2)。

    该像元信噪比模型综合考虑了目标本体辐射信号、背景噪声信号、大气扰动以及光学系统特性的影响。可以在给定波段下,分析不同探测距离、角度以及目标特性(飞行速度、高度、姿态、尺寸)条件下,探测器焦平面每个像元对目标辐射信号的响应。

    表 1给出了文献[11-12]对美国STSS低轨验证卫星(LEO Demo)的红外探测器性能参数的估计值。

    表  1  STSS LEO Demo卫星红外探测器参数估计
    Table  1.  Performance estimation of STSS LEO Demo's infrared detector
    Field of view/° 1.76
    Optical aperture D/mm 250
    Focal length f/mm 300
    Optical transmittance 0.7
    Detection band/μm 3.1 to 4.7
    Pixel number 512×512
    Pixel size/μm 30×30
    Specific detectivity D*/(m·Hz1/2·W-1) 1.48×1012
    Equivalent noise bandwidth Δf /Hz 50
    Integral time tint /ms 15
    Noise equivalent power density/ (W·cm-2) 10-17
    下载: 导出CSV 
    | 显示表格

    图 8给出了LEO星座对低空飞行的高超声速目标的常见探测模式。

    图  8  LEO星座探测模式示意图
    Figure  8.  Detection mode of LEO camera

    图 8中,最内层实线圆代表地表,其中:RE代表地球平均半径(6371 km),H代表LEO星座轨道高度(1600 km)。最外层短虚线圆代表空射式高超声速飞行器飞行高度(约30 km),中间长虚线圆代表民航飞机飞行高度(约10 km)。红色长虚线代表临边探测模式(以冷黑空间为背景),红色短虚线代表对地探测模式(以地表为背景)。

    按照LEO探测器1.76°视场角测算,在临边探测模式下(即中心视轴与30 km圆弧相切),其边缘视轴不与10 km圆弧相切或相交。即在临边探测模式下,LEO视场内不存在其他干扰源,此时探测器与目标之间的俯仰角θ为55°,方位角ψ为0°~180°。

    在对地探测模式下,有可能出现高超声速目标和干扰目标(如高速飞行的战斗机)共存于LEO探测器视场的情况(见图 8)。假设有2架飞行高度10 km、相距57 km的战斗机,与飞行高度30 km的高超声速飞行器同处于LEO探测视场内,3个目标在红外探测器焦平面的模拟成像效果如图 9所示。红色框图代表高超声速飞行器(探测目标),绿色框图代表战斗机(干扰目标)。

    图  9  对地探测模式下多目标模拟成像
    Figure  9.  Simulated imaging of multi-targets in ground detection mode

    由于战斗机发动机尾焰中心温度高达1800~2500 K[13],高于以5 Ma巡航的高超声速目标蒙皮温度(~1300 K)[14],其在红外探测器焦平面的亮度往往大于目标亮度,会严重降低探测器的识别精度,因此近地轨道星座大多采用临边探测模式[15-16],以排除战斗机、民航客机等相似信号源的干扰。

    根据文献[12]的估计,STSS Demo探测器的极限输出信噪比大约为6。探测器像元总数为512×512,像元信噪比阈值取6,地表等效辐射温度取250 K。在图 10所示星下点模式(θ=0°,ψ=90°),探测距离最短(1600 km),假定视场内没有其他干扰源,此时探测器焦平面对目标(1200 K)响应的信噪比超过阈值的像元数量最多(见图 11),焦平面上共有54×54个像元输出超过了信噪比阈值6,信噪比峰值为335,认为此时目标的可探测性最强。

    图  10  星下点模式下探测器焦平面模拟成像
    Figure  10.  Simulated imaging of detector focal plane in sub-stellar point mode
    图  11  星下点模式下焦平面像元信噪比分布
    Figure  11.  SNR distribution of focal plane pixels in sub-stellar point mode

    在临边探测模式下(θ=55°,ψ=90°),根据图 8所示几何关系计算,此时极限探测距离(切线段长度RMAX)约为4800 km。此时高超声速目标(1200 K)在LEO探测器焦平面的模拟成像如图 12所示,焦平面像元对目标响应的信噪比分布如图 13所示。此时焦平面上信噪比超过阈值6的像元数量下降为18×18,信噪比峰值下降为276。

    图  12  临边模式下探测器焦平面模拟成像(1200 K)
    Figure  12.  Simulated imaging of detector focal plane in edge detection mode(1200 K)
    图  13  临边模式焦平面像元信噪比分布(1200 K)
    Figure  13.  SNR distribution of focal plane pixels in edge detection mode (1200 K)

    可以看出,依据文献[13]给出的比较准则,当以星下点模式下的探测器最大响应像元数(54×54=2916)作为基准,用其余探测模式下响应像元数与该最大像元数的比值可以表征其可探测性的相对值,且具备可比较性,那么在临边模式下探测器对目标的可探测性为11%(18×18/2916=0.11)。

    当目标采用主动冷却等红外抑制手段时,目标表面气动温度下降,红外辐射强度降低,在探测器焦面的响应也随之下降。比如,当目标采用发汗相变散热手段,将蒙皮等效辐射温度从1200 K降低到900 K时,其在LEO探测器焦平面成像效果以及焦平面像元信噪比响应分别如图 14图 15所示。

    图  14  临边模式下探测器焦平面模拟成像(900 K)
    Figure  14.  Simulated imaging of detector focal plane in edge detection mode(900 K)
    图  15  临边模式焦平面像元信噪比分布(900 K)
    Figure  15.  SNR distribution of focal plane pixels in edge detection mode (900 K)

    可以看出,在临边探测模式下(θ=55°,ψ=90°),当目标温度从1200 K下降到900 K时,LEO探测器峰值信噪比从276降低到168,同时焦平面响应信噪比超过阈值6的像元数量从18×18下降到14×14,目标可探性从11%下降到6.7%。

    当目标可探测性下降到0.4%以下(即焦平面输出信噪比大于阈值6的像元数少于3×3),此时认为目标不具备可探测性。

    以AGM-183A头部乘波体为探测目标,表 2给出了STSS低轨LEO星座在图 8所示坐标系下,在目标不同温度T和不同方位角度ψ下的可探测性数值。

    表  2  LEO星座临边可探测性(R=4800 km,θ=55°)
    Table  2.  LEO Detectability in edge detection mode (R=4800 km, θ=55°)
    ψ T/K
    800 900 1000 1100 1200
    10 0.006 0.009 0.009 0.017 0.017
    30 0.017 0.028 0.042 0.049 0.058
    50 0.028 0.049 0.058 0.077 0.088
    70 0.034 0.058 0.077 0.088 0.110
    90 0.042 0.067 0.088 0.099 0.112
    110 0.034 0.058 0.077 0.088 0.110
    130 0.028 0.049 0.058 0.077 0.088
    150 0.017 0.028 0.042 0.049 0.058
    170 0.006 0.009 0.009 0.017 0.017
    下载: 导出CSV 
    | 显示表格

    基于表 2结果,通过插值计算给出了如图 16图 17所示的LEO星座临边模式下对AGM-183A目标可探测性数值分布。

    图  16  目标可探测性数值分布图
    Figure  16.  Distribution of target detectability
    图  17  目标可探测性数值影响因素分析
    Figure  17.  Analysis of influencing factors on target detectability

    图 16可以看出,STSS LEO星座在临边探测模式下(极限探测距离4800 km,探测俯仰角55°),对低空飞行(~30 km)的高超声速目标(~5Ma)的可探测性受目标温度T和方位角度ψ的影响最大。从图 17可以看出,在探测距离R和探测俯仰角θ相同的条件下,相比方位角ψ,目标温度T对可探测性的影响更为显著。

    当目标温度接近800 K且探测方位角ψ小于10°(或者大于170°)时,已经接近探测器的极限探测能力(0.4%),此时认为目标的可探测性非常低,或者说目标逃脱LEO星座临边探测的概率很高。

    当探测器视场中出现干扰源时,此时目标与干扰源的信噪比计算模型是类似的,可以依据干扰源的尺寸、数量、表面热物性、本体温度、背景噪声以及与探测器的相对位置关系等基础信息,分别计算在同一时刻下,探测器焦平面各个像元对干扰源信号的响应分布,从而计算干扰源的信噪比。在此基础上,通过比对在该探测模式下的目标信噪比置信区间(例如,在星下点探测模式下,对于典型温度为1200 K的AGM-183A战斗部目标,考虑其在不同飞行姿态、相对探测角度以及地表背景噪声下,在STSS LEO探测器上的信噪比置信区间为297~335,超过这个区间的信号就可以认为大概率是干扰源),按照上述最大置信概率算法即可提取目标,该算法的分析结果如图 9所示。

    从以上分析可得到如下结论:

    ① LEO探测器对AGM-183A类低空高超声速目标的可探测性可量化为焦平面像元信噪比超过阈值6的像元数量(最大数值54×54,最小数值3×3);

    ② LEO星座对目标的可探测性与探测器性能、探测距离、探测角度、目标尺寸、表面温度、大气扰动以及光学系统参数等因素相关;

    ③ 在临边探测模式下,LEO探测器对目标的可探测性主要取决于目标温度T和探测方位角ψ两个因素;

    ④ 从目标突防的角度看,采用主动冷却手段降低表面等效辐射温度所获得的收益,要高于调整飞行姿态以减小与探测器之间的方位角所带来的收益;

    ⑤ LEO星座对AGM-183A类目标全程维持较高的临边可探测性(>2%),要避免在方位角小于10°或者大于170°时探测,同时要提高探测器像元对表面温度低于800 K目标的探测性能(信噪比阈值响应的像元数量不低于8×8)。

  • 图  1   基诺衍射面理想面型

    Figure  1.   Ideal shape of Gino diffraction surface

    图  2   基诺衍射面检测结果

    Figure  2.   Test results of Gino diffraction surface

    图  3   红外导引头光学系统布局型式图

    Figure  3.   Infrared seeker optical system layout

    图  4   在20℃工作条件下红外导引头光学系统的MTF曲线、点列图、能量包围曲线、场曲与畸变曲线

    Figure  4.   MTF curves, point diagram, energy enclosing curves, field curve and distortion curve of infrared seeker optical system at 20℃

    图  5   在-40℃工作条件下红外导引头光学系统的MTF曲线、点列图、能量包围曲线、场曲与畸变曲线

    Figure  5.   MTF curves, point diagram, energy enclosing curves, field curve and distortion curve of infrared seeker optical system at -40℃

    图  6   在60℃工作条件下红外导引头光学系统的MTF曲线、点列图、能量包围曲线、场曲与畸变曲线

    Figure  6.   MTF curves, point diagram, energy enclosing curves, field curve and distortion curve of infrared seeker optical system at 60℃

    图  7   框架角计算示意图

    Figure  7.   Schematic diagram of frame angle calculation

    图  8   导引头框架角在0°、33.1°工作时光学位置示意图

    Figure  8.   Optical schematic diagram when seeker frame angle is 0° and 33.1°

    图  9   红外成像导引头调试时截图

    Figure  9.   Screenshot of infrared imaging seeker debug

    图  10   打靶试验截图

    Figure  10.   Shooting test screenshot

    表  1   红外导引头光学系统设计参数

    Table  1   Design parameters of optical system for infrared seeker

    Focal length 50mm
    Field 12.4°×9.94°
    F/# 0.9
    Wavelength 8-12μm
    Detector type UFPA 640×512, 17μm
    Frame angle ≥-30°~+30°(Pitch)
    ≥-20°~+20°(Level)
    Maximum blind area (target size 2.3m×2.3m) ≤50m
    Stable tracking range ≥2.5km
    下载: 导出CSV

    表  2   红外导引头光学系统离焦量表

    Table  2   Infrared seeker optical system defocus gauge

    Temperature Defocusing Depth of focus Remarks
    -40℃ 3.7μm 17.7μm Minimum temperature
    -20℃ 1.9μm -
    0℃ 0.5μm -
    20℃ 0μm Nominal temperature
    40℃ -1.7μm -
    60℃ -2.6μm Maximum temperature
    下载: 导出CSV

    表  3   零件公差表

    Table  3   Part tolerance table

    Parameter Tolerance Parameter Tolerance
    Sphere error ±3 aperture Surface tilt ±50"
    Surface irregularity ±0.7 aperture Air thickness ±0.05 mm
    Aspheric error ±7×10-5 mm Element tilt 0.075mm
    Thickness ±0.03 mm Element eccentricity 3.6′
    Focal plane
    displacement compensation
    ±0.5 mm - -
    下载: 导出CSV

    表  4   蒙特卡罗虚拟镜头分析结果

    Table  4   Analysis results of Monte Carlo virtual lens

    Field
    Average 1 2 3 4 5
    Nominal MTF 0.563 0.598 0.599 0.497 0.599 0.497
    Optimum MTF 0.461 0.563 0.544 0.421 0.480 0.394
    Worst MTF 0.217 0.224 0.222 0.190 0.251 0.198
    Average MTF 0.343 0.358 0.355 0.314 0.366 0.300
    Standard deviation 0.078 0.096 0.088 0.069 0.073 0.067
    Compensation parameter statistics(Change of back focal plane)
    Maximum 0.074
    Minimum -0.101
    Nominal 0.009
    Standard deviation 0.043
    MTF analysis of Monte Carlo virtual lens(Nyquist frequency)
    MTF of Monte Carlo virtual lens(90%)≥0.239
    MTF of Monte Carlo virtual lens(80%)≥0.272
    MTF of Monte Carlo virtual lens(50%)≥0.345
    下载: 导出CSV
  • [1] 李煜, 白丕绩, 陶禹, 等. 应用于红外成像导引头的非制冷焦平面探测器[J]. 红外技术, 2016, 38(4): 280-289. http://hwjs.nvir.cn/article/id/hwjs201604002

    LI Yu, BAI Piji, TAO Yu, et al. Uncooled focal plane arrays detector applied for infrared imaging seeker[J]. Infrared Technology, 2016, 38(4): 280-289. http://hwjs.nvir.cn/article/id/hwjs201604002

    [2] 汤永涛, 林鸿生, 陈春. 现代导弹导引头发展综述[J]. 制导与引信, 2014, 35(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYK201401003.htm

    TANG Yongtao, LIN Hongsheng, CHEN Chun. The development and summary of modern missile seeker[J]. Guidance & Fuze, 2014, 35(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYK201401003.htm

    [3] 姜成舟, 段萌, 潘国庆, 等. 一种小型化探测器固联于弹体式导引头光学系统设计[J]. 红外技术, 2014, 36(9): 743-747. http://hwjs.nvir.cn/article/id/hwjs201409013

    JIANG Chengzhou, DUAN Meng, PAN Guoqing, et al. A miniaturized optical system design of seeker with detector fixation[J]. Infrared Technology, 2014, 36(9): 743-747. http://hwjs.nvir.cn/article/id/hwjs201409013

    [4] 赵善彪, 张天孝, 李晓钟. 红外导引头综述[J]. 飞航导弹, 2006(8): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200608007.htm

    ZHAO Shanbiao, ZHANG Tianxiao, LI Xiaozhong. A summary of infrared seeker[J]. Winged Missiles Journal, 2006(8): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200608007.htm

    [5] 刘珂, 陈宝国, 李丽娟. 空空导弹红外导引头技术发展趋势及关键技术[J]. 激光与红外, 2011, 41(10): 1117-1121. DOI: 10.3969/j.issn.1001-5078.2011.10.012

    LIU Ke, CHEN Baoguo, LI Lijuan. Development tendency and key technology of IR seeker for air-to-air missile[J]. Laser & Infrared, 2011, 41(10): 1117-1121. DOI: 10.3969/j.issn.1001-5078.2011.10.012

    [6]

    Fraenkel R, Haski J, Mizrahi U, et al. Cooled and uncooled infrared detectors for missile seekers[C]//Proceedings of SPIE, 2014, 9070: 90700P.

    [7] 孙爱平, 龚杨云, 朱尤攀, 等. 大孔径、大视场辅助驾驶仪红外镜头无热化设计[J]. 红外技术, 2013, 35(10): 617-622. DOI: 10.11846/j.issn.1001_8891.201311008

    SUN Aiping, GONG Yangyun, ZHU Youpan, et al. Optical system design of low-light-level and infrared image fusion hand-held viewer[J]. Infrared Technology, 2013, 35(11): 712-717. DOI: 10.11846/j.issn.1001_8891.201311008

图(10)  /  表(4)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  97
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-10
  • 修回日期:  2021-01-18
  • 刊出日期:  2021-08-19

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日